
Round 1, UNM-PNM Statewide High School Mathematics Contest 2025-2026, Solutions

Dear Students,
If you have suggestions for the Contest, or if you have different solutions to any of this year’s first-round
problems, please contact us either by ordinary mail or email.

ordinary mail: email:
Professors James Degnan, Stephen Lau, and Cristina Pereyra jamdeg@unm.edu

Department of Mathematics and Statistics lau@math.unm.edu

MSC01 1115, 1 University of New Mexico crisp@math.unm.edu

Albuquerque, NM 87131

Please remember that you can find information on past contests at http://mathcontest.unm.edu. We
express our gratitude to Coach Sean Choi for running online strategy and solution sessions for the first-
round. We also thank Sean and Bill Cordwell for sharing their solutions with us. Finally, thanks to all
participants, their teachers, and families. You are an inspiration to us!

1. How many digits are there in the integer 22029 × 52022?

ANSWER: 2025

Solution. We notice that

22029 × 52022 = 27 × 22022 × 52022 = 27 × (2× 5)2022 = 128× 102022.

102022 has 2023 digits, since 101 = 10 has two, 102 = 100 has three, etc. Now, 128 × 10 = 1280 has four,
128× 102 = 12800 has five, etc. Therefore, 128× 102022 has 2025 digits.

2. A single frog sits on each of four lily pads in a row. One of the frogs then jumps
onto the back of a neighbor, either to the left or right. This leaves a configuration
with one empty pad, and one pad supporting a group of two frogs. The jumping
continues subject to the rules that one frog must jump to a neighboring pad,
two frogs must jump two pads as a group, and three frogs must jump three pads
as a group. Frogs will not jump onto an empty pad, nor will a group split up
once formed. The frogs all seek to occupy a single lily pad, a frog party! The
figure shows one sequence of valid jumps resulting in a party. How many different
jumping sequences result in a party?

PARTY!

ANSWER: 14

Solution. This problem was inspired by the Math Teacher Circle led by Blythe Tipton (Eisenhower Middle
School) at UNM on 4 September 2025. We use brute force, exhausting all possible cases. To describe the
sequence of jumps, we use the labels (frog;pad), and, as more frogs pile up on one pad, we write, for example,
([frogA,frogB];padB) to mean the frog on pad A has joined the frog on pad B. We start with (1; 1), (2; 2),
(3; 3), (4; 4), and the sequence shown in the figure is

(1; 1)(2; 2)(3; 3)(4; 4) → ([2, 1]; 1)(3; 3)(4; 4) → ([2, 1]; 1)([4, 3]; 3) → ([2, 1, 4, 3]; 3).

We begin by considering all possible first jumps.

(1; 1)(2; 2)(3; 3)(4; 4) → ([1, 2]; 2)(3; 3)(4; 4)

(1; 1)(2; 2)(3; 3)(4; 4) → ([2, 1]; 1)(3; 3)(4; 4)

(1; 1)(2; 2)(3; 3)(4; 4) → (1; 1)([2, 3]; 3)(4; 4)

(1; 1)(2; 2)(3; 3)(4; 4) → (1; 1)([3, 2]; 2)(4; 4)

(1; 1)(2; 2)(3; 3)(4; 4) → (1; 1)(2; 2)([3, 4]; 4)

(1; 1)(2; 2)(3; 3)(4; 4) → (1; 1)(2; 2)([4, 3]; 3)
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By symmetry, we now need only explore subsequent jumps starting from the first three of the above ini-
tial jumps, but must then remember to adjust our results below with an appropriate factor of 2. Indeed,
if in the last three initial jumps we send 1 → 4, 2 → 3, 3 → 2, 4 → 1, and then reorder the pads, we
recover the first three initial jumps. For example, with this flipping reassignment, (1; 1)(2; 2)([4, 3]; 3) be-
comes (4; 4)(3; 3)([1, 2]; 2), and so ([1, 2]; 2)(3; 3)(4; 4) upon reordering. This is the first listed initial jump.
Exploitation of the symmetry is key in this problem, or else the casework doubles.

Therefore, consider restarting from one of the following three configurations.

Case 1. ([1, 2]; 2)(3; 3)(4; 4) The possible jumps are

([1, 2]; 2)(3; 3)(4; 4) → (3, 3)([1, 2, 4]; 4)

([1, 2]; 2)(3; 3)(4; 4) → ([3, 1, 2]; 2)(4; 4)

([1, 2]; 2)(3; 3)(4; 4) → ([1, 2]; 2)([3, 4]; 4)

([1, 2]; 2)(3; 3)(4; 4) → ([1, 2]; 2)([4, 3]; 3).

The first possibility on the right can only yield a party on pad 4. The second possibility can not
yield a party, since going from pad 2 to 4 or vice versa requires 2 jumps, but the number of frogs is
3 and 1 on these pads. The third can yield parties on pads 2 or 4. The fourth can not yield a party,
since we have 2 groups of 2 frogs on adjacent pads. Summing up, for this case parties on pads 2 and
4 are possible, on pad 2 by 1 sequence and on pad 4 by 2 sequences. 3 possible sequences

Case 2. ([2, 1]; 1)(3; 3)(4; 4) The possible jumps are

([2, 1]; 1)(3; 3)(4; 4) → ([2, 1, 3]; 3)(4; 4)

([2, 1]; 1)(3; 3)(4; 4) → ([2, 1]; 1)([3, 4]; 4)

([2, 1]; 1)(3; 3)(4; 4) → ([2, 1]; 1)([4, 3]; 3).

The first possibility on the right can yield a party only on pad 3. The second possibility cannot yield
a party. The third possibility can yield parties on pads 1 and 3. Summing up, for this scenario the
possibilities are parties on pad 1 by 1 sequence and on pad 3 by 2 sequences. 3 possible sequences

Case 3. (1; 1)([2, 3]; 3)(4; 4) The possible jumps are

(1; 1)([2, 3]; 3)(4; 4) → ([2, 3, 1]; 1)(4; 4)

(1; 1)([2, 3]; 3)(4; 4) → (1; 1)([4, 2, 3]; 3).

The first possibility on the right can only yield a party on pad 4, and the second cannot yield a
party. Summing up, only a party on pad 4 is possible by 1 sequence. 1 possible sequence

Collecting the results for these three cases, we determine that a party on pad 1 can be achieved by 1 sequence,
on pad 2 by 1 sequence, on pad 3 by 2 sequences, and on pad 4 by 3 sequences. In all, 7 possible sequences
lead to parties. Multiplying by the aforementioned factor of 2, we find 14 possible sequences.

3. In the following equation a, b, c, and d are positive integers. Find a+ b+ c+ d.

a+
1

b+
1

c+
1

d

=
2025

671

ANSWER: 70

Solution 1. We repeatedly use the division algorithm, starting with the numerator of the given fraction.
Precisely, 2025 = 3× 671+12, dividing by 671; 671 = 12× 55+11, dividing by 12; 12 = 1× 11+1, dividing
by 11. Written out, these steps are

2025

671
= 3 +

12

671
= 3 +

1
671

12

= 3 +
1

55 +
11

12

= 3 +
1

55 +
1
12

11

= 3 +
1

55 +
1

1 +
1

11

.

Therefore, a+ b+ c+ d = 3 + 55 + 1 + 11 = 70.
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Solution 2. This solution is the same as the previous one, except with an inequality given at each step.
Since, according to the problem statement, c, d ≥ 1, we have 1 < c+ 1/d < ∞, so that 0 < 1/(c+ 1/d) < 1.
Then, since b ≥ 1, we have 1 < b+ 1/(c+ 1/d) < ∞, so that 0 < 1/(b+ 1/(c+ 1/d)) < 1. Therefore, since
2025/671 = 3 + 12/671, we must have a = 3 and 1/(b+ 1/(c+ 1/d)) = 12/671. Next,

b+
1

c+ 1/d
=

671

12
= 55 +

11

12
.

Whence b = 55 and 1/(c+ 1/d) = 11/12. Finally then,

c+
1

d
=

12

11
= 1 +

1

11
.

From here, we infer c = 1 and d = 11. So a+ b+ c+ d = 3 + 55 + 1 + 11 = 70.

4. Chords AB and CD across the shown circle intersect at E and are perpendicular to
each other. If the segments AE, EB, and ED have lengths 2, 6, and 3, respectively,
then what is the square of the circle’s diameter?

C

D

A B
62

3

E

ANSWER: 65

Solution 1. From the diagram the product |AE| · |EB| = 2 · 6 = 12. Therefore, by the Intersecting Chords
Theorem, the product |DE| · |EC| = 3|EC| is also equal to 12, so that |EC| = 4. The horizontal diameter
meets perpendicularly and bisects the segment DC. Whence the horizontal diameter lies 1

2 unit above the
chord AB. Likewise, the vertical diameter lies 2 units to the right of the chord DC. So we have a right
triangle whose hypotenuse is the radius r, and whose legs have lengths 1

2 and 4; see Fig. 1 left. Therefore,

r =

√
16 +

1

4
=

√
65

2
.

The diameter has length
√
65.

C

D

A B
r 1/2

2 2

C

D
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H

F

O

Figure 1

Solution 2. Suppose that you did not know the neat geometric fact used in the first solution. Let O denote
the center of the circle, with r its radius. Respectively, let F and H denote the feet of the segments drawn
from the center O which perpendicularly meet the segments AB and CD; see Fig. 1 right. Note that F
and H bisect AB and CD; indeed, for example, the right triangles △OHC and △OHD share a common
leg and have the same hypotenuse r. Since |AB| = 8, we then have |FB| = |AF | = 4, and, with |AE| = 2,
that |EF | = 2. Now □FEHO is a rectangle, so that |HO| = |EF | = 2 and |FO| = |EH|. Furthermore,
|OA| = |OD| = r. Introducing the variable h = |FO|, the length |DH| = |DE| + |EH| = 3 + h. Consider
now the right triangles △AFO and △DHO, with the Pythagorean Theorem applied to each, respectively
yielding the equations

r2 = h2 + 42, r2 = (3 + h)2 + 22.

Whence h2 + 16 = h2 + 6h+ 13, and, upon canceling h2 on both sides, h = 1
2 . Now we solve for the radius

r =

√
1

4
+ 42 =

√
1 + 64

4
=

√
65

4
=

√
65

2
.
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Therefore the diameter of the circle is 2r =
√
65.

Remark: Similar reasoning establishes the Intersecting Chords Theorem used in the first solution: Consider
two chords, AB and CD, of a circle which intersect perpendicularly at the point E. Then |AE| · |EB| =
|CE| · |ED|.

5. Based on the following logic table, with entries T (True) and F (False), what is the
probability that the nested statement

(
(p → q) → r

)
is T? Here each of p, q, and r are

either T or F. Express this probability as a whole fraction in lowest terms, and as your
answer report the sum of this fraction’s numerator and denominator.

p q p → q

T T T
T F F
F T T
F F T

ANSWER: 13

Solution 1. Since p, q, and r can only be T and F, there are 23 = 8 possible nested statements (p → q) → r.
Namely,

(T → T) → T
(T → F) → T
(T → T) → F
(T → F) → F

(F → T) → T
(F → F) → T
(F → T) → F
(F → F) → F.

Using the table to evaluate the expression within each parentheses in these expressions, we get

T → T
F → T
T → F
F → F

T → T
T → T
T → F
T → F.

Finally, use of the table to evaluate each of the preceding expressions yields

T
T
F
T

T
T
F
F.

Therefore, 5
8 is the probability that the expression (p → q) → r is T.

Solution 2. The same solution can be presented in tabular form. The logic table for the implication p → q
can be paraphrased as stating that the implication is False (F) only when the hypothesis (p) is True (T)
and the conclusion (q) is False (F). With this principle, we write down the logic table corresponding to
(p → q) → r. We have 3 variables (p, q, r) and 8 possible logic values. In the 8 columns of the table corre-
sponding to the variables (p, q, r), we have listed all possible combinations of the logic values.

p q p → q r (p → q) → r
T T T T T
T F F T T
F T T T T
F F T T T
T T T F F
T F F F T
F T T F F
F F T F F

5 scenarios out of 8 possible scenarios yield True (T); therefore, the probability that (p → q) → r is T is 5
8 .

6. Five ducks are swimming around the UNM duck pond which (for the purposes of this problem) has a
circumference of 36 meters. The ducks begin a race around the whole circumference of the duck pond at the
same time. Suppose that Daud the duck swims at 9 meters per minute, Dewi the duck swims at 6 meters
per minute, Dino the duck swims at 4 meters per minute, and Duru the duck swims at 3 meters per minute.
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Dyan the duck starts at 1 meter per minute, but Dyan’s speed doubles every time another duck crosses the
finish line. How many minutes does Dyan the duck take to finish the race?

ANSWER: 11

Solution. We thank Sean Choi for this problem. The given information determines the following table.

duck speed (meters/min) time to finish (min)
Daud 9 36/9 = 4
Dewi 6 36/6 = 6
Dino 4 36/4 = 9
Duru 3 36/3 = 12

Provisionally, Dyan’s speed vDyan is then the piecewise function

vDyan =


1 for 0 ≤ t < 4
2 for 4 ≤ t < 6
4 for 6 ≤ t < 9
8 for 9 ≤ t < 12

16 for t ≥ 12.

We write provisionally here, since we have not yet determined how long Dyan takes to reach the finish line,
and so if all of these velocities are attained. Dyan travels 4 meters over 0 ≤ t < 4, 4 meters over 4 ≤ t < 6,
and 12 meters over 6 ≤ t < 9, for a total of 20 meters over 0 ≤ t < 9. Therefore, now with the speed 8
meters/min, she reaches the finish line after an additional 2 minutes, that is after 11 total minutes which
puts her behind Dino, but ahead of Duru.

Remark: One student requested clarification, smartly asking if the ducks leave the race once crossing the
finish line, or keep swimming. For example, does Daud leave the race at time t = 4, or keep swimming and
cross the finish line again at t = 8. The problem statement implicitly assumes that the ducks leave the race
after the first finish-line crossing, but we can also solve the problem assuming that they keep swimming.
Under the “keep swimming” scenario, we have the following table.

duck speed first crossing time second crossing time third crossing time
Daud 9 4 8 12
Dewi 6 6 12 18
Dino 4 9 18 27
Duru 3 12 24 36

Provisionally, Dyan’s speed is now the piecewise function

vDyan =


1 for 0 ≤ t < 4
2 for 4 ≤ t < 6
4 for 6 ≤ t < 8
8 for 8 ≤ t < 9
16 for 9 ≤ t < 12.

Presumably, Dyan’s speed would jump to 64 at t = 12, as both Daud and Dewi have subsequent crossings
at this time. Now Dyan travels 4 meters over 0 ≤ t < 4, 4 meters over 4 ≤ t < 6, 8 meters over 6 ≤ t < 8,
and 8 meters over 8 ≤ t < 9. Therefore, Dyan as travelled 24 meters by t = 9, when Dyan’s speed again
doubles to 16. Still 12 meters from the finish line, Dyan takes an additional 12

16 = 3
4 minutes to reach it.

Dyan then makes the first finish-line crossing at t = 9 3
4 minutes. Given that the answer must be an integer

per the instructions, we now know this interpretation of the problem is not possible.

7. Given two positive integers a and b, their greatest common divisor gcd(a, b) is the largest positive integer
which divides them both. For example, gcd(4, 21) = 1, whereas gcd(6, 21) = 3. Find the product ab,



5

assuming that gcd(a, b) = 5 and in the expansion of (a + bx)4 it turns out that the coefficient of x2 equals
the coefficient of x3.

ANSWER: 150

Solution. We adopt the direct approach.

(a+ bx)2 = a2 + 2abx+ b2x2,

therefore

(a+ bx)4 = (a2 + 2abx+ b2x2)(a2 + 2abx+ b2x2)

= a4 + 2a3bx+ a2b2x2

+ 2a3bx+ 4a2b2x2 + 2ab3x3

+ b2a2x2 + 2ab3x2 + b4x4

= a4 + 4a3bx+ 6a2b2x2 + 4ab3x3 + b4x4.

This expansion can be obtained more quickly with Pascal’s triangle. We are told that 6a2b2 = 4ab3 or
3a = 2b. Therefore, a = 2λ and b = 3λ, but λ must be 5 since gcd(a, b) = 5. So a = 10 and b = 15, and the
product is 150.

8. A circular disk is divided by 362 equally spaced radii. What is the maximum number of non-overlapping
areas into which the disk can be divided by the addition of a chord drawn across the bounding circle?

ANSWER: 544

Solution 1. To gain insight, we first consider the cases where the disk is divided by 2n = 2, 4, 6, and 8
equally spaced radii; see Fig. 2. Observe that these radii then come in pairs, with each pair forming a
diagonal. The cases shown in the figure then correspond to n = 1, 2, 3, and 4 diameters, respectively dividing
the disk into 2n = 2, 4, 6, and 8 wedges of equal area. For each case in the figure, we have also drawn a red
chord which intersects each of the diameters. Respectively, this results in 4, 7, 10, and 13 non-overlapping
areas, and, by all appearances, this is the best we can achieve. In terms of the number n of diameters,
the pattern suggests that 3n + 1 is the corresponding number of non-overlapping areas. Since 362 (equally
spaced radii) corresponds to n = 181 (diameters), we conjecture that the number 3n+ 1 of non-overlapping
areas is 3 · 181 + 1 = 544. Note: this “solution” is really an educated guess.

Solution 2. We have 362 equally spaced radii determining A = 362 areas (wedges, or pizza slices). To get
a feel for the problem, we start with fewer radii. We start with an even number 2n of radii, and so A = 2n
wedges to begin with. The goal is to draw a chord C such that the new number AC ≥ A of areas is as large
as possible. As a practical problem, we are making a straight cut on the pizza, and some slices are being
split. We want to maximize the number of pieces obtained with just one straight cut, regardless of their size
and shape. Given n, there is a finite number of configurations (all the chords of a certain type, enumerated
below) which yield a distinct number AC . Therefore, there will be a largest AC that we denote An.

When n = 1, the 2 equally spaced radii form a single diameter d which divides the disk into two half-disks,
and A = 2. The possible chords are as follows. (i) C coincides with d; no new areas are created and AC = 2.
(ii) C does not intersect d; C will leave untouched one of the half-disks, and split the other in two, so AC = 3.
(iii) C intersects d at exactly one point, with two sub-cases: (iii.a) the intersection point is on the boundary,
so C splits one half-disk in two and AC = 3, and (iii.b) the intersection point is interior, so C splits both
half-disks in two and AC = 4. Therefore, A1 = 4.

When n = 2, each of the 4 equally spaced radii will have an opposite partner, with the pair forming a
diameter. So we have two diameters, d1 and d2, intersecting at a 90◦ angle and splitting the disk into 4
quarter-disks, so A = 4. The possible chords are as follows. (i) C coincides with d1 or d2; no new areas are
created and AC = 4. (ii) C intersects neither d1 nor d2; C will leave untouched three of the quarter-disks,
and split the remaining one in two, so AC = 5. (iii) C intersects either d1 or d2, but not the other. The
intersection point may be on the boundary (iii.a), with AC = 5, or in the interior (iii.b), with AC = 6. (iv)
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C intersects both d1 and d2, with four sub-cases. (iv.a) C is a distinct diameter intersecting both d1 and
d2 at the center; so C splits two opposite quarter-disks in two, and AC = 6. (iv.b) C intersects both d1
and d2 at boundary points, with AC = 5. (iv.c) C intersects either d1 or d2 at a boundary point, but the
other diameter in the interior, so that AC = 6. (iv.d) C intersects both d1 and d2 at distinct interior points.
In fact, these two intersection points must lie on consecutive radii that border three quarter-disks. Each of
these three quarter-disks is split by C, adding three areas, so AC = 7. Therefore, A2 = 7.

When n = 3, the 6 radii will correspond to 3 diameters d1, d2, and d3, with any two intersecting at a 60◦

angle. Now we start with sixth-disks, and A = 6. The possible chords are as follows. (i) C coincides with
with one of the diameters; AC = 6. (ii) C intersects none of the diameters; AC = 7. (iii) C intersects
either d1, d2, or d3, but not the other two. The intersection point may be on the boundary (iii.a), with
AC = 7, or in the interior (iii.b), with AC = 8. (iv) C intersects precisely two of d1, d2, and d3, but not the
remaining one, with three sub-cases. (iv.a) The two intersection points are on the boundary; AC = 7. (iv.b)
One intersection point is on the boundary, the other in the interior; AC = 8. (iv.c) Both intersection points
are interior; AC = 9. (v) C intersects d1, d2, and d3. Sub-cases abound. (v.a) The center is the common
intersection point, with C a distinct diameter; AC = 8. (v.b) Two intersection points lie on the boundary,
with one interior; AC = 8. (v.c) One intersection point lies on the boundary, with two interior; AC = 9.
(v.d) All three intersection points are interior. C intersects the three diameters at distinct points. The three
intersection points must lie on consecutive radii that border four sixth-disks. Each of these four sixth-disks
is split by C, adding four areas, so AC = 10. Therefore, A3 = 10.

A pattern emerges. The given 2n equally spaced radii correspond to n diameters, and our experimentation
with fewer radii indicates the following. The largest number of created areas arises when the chord C is not
a diameter and intersects all n diameters at n distinct interior points. These points lie on n consecutive radii
that border n+1 areas. These n+1 areas are split by C, and n+1 areas will be added to the total; that is
An = A+ n+ 1 = 3n+ 1 = 3

2A+ 1. In particular, if A = 362, then n = 181 and A181 = 544.

Solution 3. The number 362 is large enough that we choose to generalize the problem. Assume an arbitrary
even number 2n of equally spaced radii {r1, r2, . . . , r2n}, emanating from the origin at angles θk = 2kπ/(2n),
where k = 1, 2, · · · , 2n. With the restriction 1 ≤ k ≤ n, we have

θk+n = 2(k + n)π/(2n) = π + θk.

So our division of the disk by 2n radii is in fact a division by n diameters. If we choose our chord to be one
of these diameters, then we add no new areas, instead keeping the 2n wedges we started with. If we choose
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a different diameter, then it will be nestled between two of the consecutive given diameters. Then the new
diameter will split two wedges, adding just two new areas for a total of 2n + 2 non-overlapping areas. We
can clearly do better by choosing a chord which is not a diameter.

One possibility is the chord which connects the tips (endpoints on the circular boundary) of r1 and rn.
Figure 3 shows this particular chord as a dotted red segment for n = 2, 3, 4. This chord will divide n − 1
wedges in two. As we start with 2n wedges, splitting n− 1 of these results in 3n− 1 non-overlapping areas.
Not bad, but can we do better?

An optimal chord will cut across all n diameters. Such a chord may arise by perturbing the chord which
connects the tips of r1 and rn. Indeed, if this tip-connecting chord is parellel transported (with simultaneous
extension so that it remains a chord) towards the center, then a new chord1 arises which indeed cuts across
all diameters. Figure 3 depicts the new perturbed chord as a solid red segment for the cases n = 2, 3, 4. The
perturbed chord still divides the same n−1 wedges as the tip-connecting chord did, but now also divides two
further wedges. Indeed, consider the perturbed chord as depicted by a red segment in Fig. 4. Let A, P , Q,
B be points on the red chord, labeled left to right, corresponding to lying on the circle, at the intersection

1We can write down the equation for such a chord. If our disk has radius R, then the tips of r1 and rn are R(cos θ1, sin θ1)

and R(cos θn, sin θn), respectively. So the tip-connecting chord has the point-slope equation

y −R sin(θ1)

x−R cos θ1
= m, m =

sin θn − sin θ1

cos θn − cos θ1
=

sin θ1

1 + cos θ1
= tan( 1

2
θ1),

where we have used a half-angle identity to simplify the expression for the slope m. In slope-intercept form this equation is

y = mx+ b, b = R(sin θ1 −m cos θ1).

One possible choice for an optimal chord is then

y = mx+ 1
2
b.

This line is parallel to the tip-connecting line, but shifted toward the center of the disk. To find the x values which correspond

to where this line intersects the boundary of the disk (the chord endpoints), we need to solve a nonlinear system of equations

(the above equation along with x2 + y2 = R2). This would amount to finding the roots of (1 +m2)x2 +mbx+ 1
4
b2 −R2 = 0.



8

with rn, at the intersection with r1, and on the circle. Then the segment PQ cuts n− 1 wedges precisely in
two, giving 2n− 2 non-overlapping areas. The segments AP and QB each subdivide a wedge in two, giving
4 non-overlapping areas. Finally, we have n − 1 wedges left over which are not subdivided by the added
chord. In all we find (2n− 2) + 4 + (n− 1) = 3n+ 1 non-overlapping areas. We should remark on why we
cannot do better. The described optimal chord starts in one wedge and ends in the antipodal wedge, while
passing between all wedges which lie to one side and between these two wedges. A straight segment cannot
pass through yet another wedge in addition to these. If the red line did pass into yet another wedge, it would
have crossed a diagonal at two distinct points, and that is not possible.

Our analysis of the generalized problem determines that at most 544 non-overlapping areas arise in drawing
a chord across a disk subdivided by 2n = 362 equally spaced radii.

9. If R is expressed in lowest terms, what is the denominator of R?

R =
1 + 3 + 5 + 7 + · · ·+ 999

2 + 4 + 6 + · · ·+ 1000

ANSWER: 501

Solution 1. Following the footsteps2 of Johann Carl Friedrich Gauss as a child, we know that the sum of
the first N natural numbers is

1 + 2 + · · ·+N = 1
2N(N + 1).(1)

Gauss’ idea can be exploited here. First, since 1000 is even, the numbers between and including 1 and 1000
can be split into 500 odd and 500 even numbers. For these odd numbers, we consider

numerator = 1 + 3 + · · · + 997 + 999
numerator = 999 + 997 + · · · + 3 + 1

2(numerator) = 1000 + 1000 + · · · + 1000 + 1000

Since there are 500 terms in these sums, 2(numerator) = 500 · 1000, so that numerator = 5002. Likewise, for
these even numbers, we consider

denominator = 2 + 4 + · · · + 998 + 1000
denominator = 1000 + 998 + · · · + 4 + 2

2(denominator) = 1002 + 1002 + · · · + 1002 + 1002

We then find 2(denominator) = 500 · 1002, so that denominator = 500 · 501. So R can be expressed as

R =
500

501
,

a result evidently in lowest terms.

Solution 2. Let P denote the sum of odd numbers less than 1000, and Q the sum of even numbers less than
or equal to a 1000,

P = 1 + 3 + 5 + · · ·+ 997 + 999, Q = 2 + 4 + 6 + · · ·+ 998 + 1000.

Then R = P/Q. By the Gauss formula (1) with N = 1000,

P +Q = 1 + 2 + 3 + · · ·+ 999 + 1000 =
1000× 1001

2
= 500× 1001.(2)

2According to lore, when asked to add the first 100 natural numbers (N = 100) a seven-year old Gauss wrote the following

in his mind.

S = 1 + 2 + · · · + N − 1 + N

S = N + N − 1 + · · · + 2 + 1

2S = (N + 1) + (N + 1) + · · · + (N + 1) + (N + 1)

So S = 1
2
N(N + 1). Gauss then concluded that sum of the first hundred natural numbers was 5050 = 1

2
× 100× 101.
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After pulling out and overall factor of 2 in Q, we use the same formula with N = 500 to find

Q = 2(1 + 2 + · · ·+ 500) = 2
500× 501

2
= 500× 501.(3)

With (2) and (3), we solve for P , finding

P = 500× 1001−Q = 500× 1001− 500× 501 = 500× (1001− 501) = 5002.

Therefore,

R =
P

Q
=

5002

500× 501
=

500

501
.

Since 500 = 5 × 100 = 53 × 22 and 501 is not divisible by either 2 or 5, then the fraction 500
501 is in lowest

terms. Its denominator is 501.

Note: As an exercise, you can verify that if PN denotes the sum of the odd numbers less than or equal to
N , and QN the sum of the even numbers less than or equal to N , then, if N is an even number,

PN = ( 12N)2, QN = ( 12N)( 12N + 1).

What if N is an odd number?

Solution 3. One can look for a pattern, by considering other even numbers n = 2k, and analyzing the
fraction

Rk =
1 + 3 + · · ·+ 2k − 1

2 + 4 + · · ·+ 2k
.

For example, when n = 2, k = 1 and R1 = 1
2 . When n = 4, k = 2 and R2 = 1+3

2+4 = 4
6 = 2

3 . Shall we try one

more? When n = 6, k = 3 and R3 = 1+3+5
2+4+6 = 9

12 = 3
4 . At this point, we might guess that

Rk =
k

k + 1
.(4)

If valid, then for n = 1000 we have k = 500 and R500 = 500
501 , the correct answer. So far, the last formula is a

guess; we will verify our guess by induction on k. We have already checked the base case(s). Assuming (4),
we want to show that Rk+1 = k+1

k+2 follows. We start with

Rk+1 =
1 + 3 + · · ·+ (2(k + 1)− 1)

2 + 4 + · · ·+ 2(k + 1)
=

1 + 3 + · · ·+ (2k − 1) + (2k + 1)

2 + 4 + · · ·+ 2k + 2(k + 1)
,

where the first equality is just the definition, and the second follows by including the second to last term
in the numerator and denominator, also noting that 2(k + 1) − 1 = 2k + 1. With last equation and some
algebra, we then find

Rk+1 =
1 + 3 + · · ·+ (2k − 1)

2 + 4 + · · ·+ 2k + 2(k + 1)
+

2k + 1

2 + 4 + · · ·+ 2k + 2(k + 1)

=

(
1 + 3 + · · ·+ (2k − 1)

2 + 4 + · · ·+ 2k

)(
2 + 4 + · · ·+ 2k

2 + 4 + · · ·+ 2k + 2(k + 1)

)
+

2k + 1

2 + 4 + · · ·+ 2k + 2(k + 1)
.

(5)

To obtain the first equality, we have used a+b
c = a

c + b
c , with a = 1 + 3 + · · · + (2k − 1), b = 2k + 1, and

c = 2 + 4 + · · · + 2k + 2(k + 1) the common denominator. To obtain the second equality, we multiplied
and divided the first term a

c on the right-hand side by d = 2 + 4 + · · ·+ 2k, followed by the reorganization
a
c
d
d = a

d
d
c . As a result of these steps, we have introduced the fraction

a

d
=

1 + 3 + · · ·+ (2k − 1)

2 + 4 + · · ·+ 2k
,

precisely the expression for Rk, which we are assuming is equal to k
k+1 . With this observation, we write the

last expression in (5) as

Rk+1 =
k

k + 1

(
2 + 4 + · · ·+ 2k

2 + 4 + · · ·+ 2k + 2(k + 1)

)
+

2k + 1

2 + 4 + · · ·+ 2k + 2(k + 1)
.(6)

Next, we make two appeals to Gauss’ formula,

1 + 2 + · · ·+ k =
1

2
k(k + 1), 1 + 2 + · · ·+ k + (k + 1) =

1

2
(k + 1)(k + 2),
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in order to further simplify (6), thereby reaching

Rk+1 =
k

k + 1

k(k + 1)

(k + 1)(k + 2)
+

2k + 1

(k + 1)(k + 2)
=

k2 + 2k + 1

(k + 1)(k + 2)
=

k + 1

k + 2
.

By the Principle of Mathematical Induction, we have shown that Rk = k
k+1 for all k ≥ 1. In particular, for

k = 500 we have that R500 = 500
501 .

10. Relative to the center of the unit circle, a radian can be defined as the angle
subtended by a unit-length arc on the unit circle. Likewise, relative to the center of
the unit sphere, a steradian can be defined as the solid angle subtended by a unit-area
portion (of any shape) on the unit sphere. The solid angle subtended by the unit sphere
itself is 4π steradians.

Consider a round sphere, with radius r =

√
8
√
3

π , and two great circles which emanate

from its north pole NP. At NP they intersect at a right angle, and together with a
portion of the equator form an equilateral spherical triangle; see the figure. What is
the side length of an equilateral triangle with the same area as this spherical triangle?

NP

ANSWER: 4

Solution 1. The preamble of the problem tell us that the area of a unit-radius sphere is 4π, and so by
dimensional analysis the area of a radius-r sphere is 4πr2. The area of the described spherical triangle is 1

8
the area of the described sphere, namely

Aspherical△ = 1
8 · 4πr2 = 1

2πr
2 = 1

2π
(
8
√
3/π

)
= 4

√
3.

Therefore, if the side length of the planar triangle is a, then we require

Aplanar△ = 1
4

√
3a2 = 4

√
3 =⇒ a2 = 16,

and a = 4. Here we have used the formula for the area of a planar equilateral triangle. To recall how that
formula arises, let Aplanar△ = 1

2ah, where h is the height of the equilateral triangle with side a. Applying

the Pythagorean Theorem to the right triangle with hypotenuse a and sides 1
2a and h,

h2 + 1
4a

2 = a2 ⇐⇒ h2 = 3
4a

2,

we conclude that h = 1
2

√
3a and Aplanar△ = 1

4

√
3a2.

Solution 2. This “solution” is really an educated guess relying on all available knowledge; in particular,
that the answer should be an integer. Say we can’t make heads nor tails of the statement in the problem’s
preamble. The depicted equilateral spherical triangle has sides (in fact arcs) of length

ℓ =
[
one fourth of the circumference of a circle with radius r =

√
8
√
3
/
π
]

= 1
2π

√
8
√
3
/
π

= π
√
2×

√√
3/π

= π ×
√√

4/3×
√
3/π.

Remember, we don’t have a calculator, so we will have to cut some corners to get a decimal number from the
last expression. Both square-root factors here should be numbers reasonably close to 1. Indeed,3 4/3 is close

to 1,
√
4/3 is closer still, and

√√
4/3 is even closer. Likewise, 3/π is close to 1, and

√
3/π is closer still.

3You may be aware that for any number x > 0, x ̸= 1 the number
√
x is closer to 1 than x is itself. The following calculation

justifies this assertion. ∣∣1−
√
x
∣∣ = ∣∣∣ (1−

√
x)(1 +

√
x)

1 +
√
x

∣∣∣ = |1− x|
1 +

√
x

< |1− x|

The final strict inequality holds because |1− x| ̸= 0 and 1 +
√
x > 1, so that 0 < 1

/
(1 +

√
x) < 1.
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We conclude that the side length ℓ of our spherical triangle is a number close to4 π = 3.14159 · · · . Since we
are told the answer is an integer, the corresponding equilateral planar triangle likely has side length 3 or 4
(the closest integers to π). But which one? For the same side length, we expect that an equilateral spherical
triangle will have a larger area than an equilateral planar triangle. Why? Well, the spherical triangle bulges
out in the middle. Therefore, to have the same area as the spherical triangle, the planar triangle in question
should have a longer side length. Our educated guess is then 4.

Remark. The problem relies on a spherical triangle, a region on the sphere bounded by three arcs of great
circles, and the notion of a right angle for a spherical triangle. In fact, for the shown equilateral spherical
triangle, the angle at each vertex is right, and these three angles sum to 3

2π (or 270◦). So this is definitely
not a planar triangle! While we have assumed that the problem can be solved relying on an intuitive notion
of such a right angle, one way to understand angles on the sphere is through stereographic projection.5

Let P , with Cartesian coordinates (x, y, z) = r(sin θ cosϕ, sin θ sinϕ, cos θ), be a point on the radius-r sphere
x2+y2+z2 = r2. Respectively, θ and ϕ are the polar and azimuthal angles,6 with 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π.
The equator of the sphere corresponds to θ = 1

2π. Given the point P on the sphere, we define a corresponding
point Q on the z = 0 plane, also called the xy-plane. We choose Q such that Q, P , and the South Pole
SP = r(0, 0,−1) are colinear, although NP = r(0, 0, 1) often replaces SP in the construction. We skip
the derivation, but this choice determines that Q has coordinates (x, y, z) = r tan( 12θ)(cosϕ, sinϕ, 0). This
transformation defines a stereographic projection mapping the sphere to the plane. Great circles of longitude
on the sphere correspond to fixation of the azimuthal angle ϕ; they run from the North Pole (θ = 0) through
the South Pole (θ = π). These circles are mapped to straight lines through the origin O in the xy-plane.
The North Pole is mapped to O, and, in a sense, the South Pole to ∞. Figure 5 shows other images.

Where do angles enter the picture? Given two curves (say two arcs of great circles) on the sphere which
intersect at a point P (assumed not SP ), we could define the angle at P between these spherical curves as
follows. First, use the stereographic projection to map the spherical curves to planar curves in the xy-plane
which intersect at the point Q corresponding to P . Next, compute the angle at Q between the planar curves
in the usual sense, Take this angle to define the angle at P between the spherical curves. With this definition,
the angle at NP between two great circles is the angle between two straight rays in the plane emanating
from O. The equilateral spherical triangle in the problem statement then has right angles at all vertices,
because all vertex angles in its image under the stereographic projection are right; again see Fig. 5.

O

Figure 5. Image of the equator (dotted circle) and image of the equilateral spherical tri-
angle (solid “pizza slice”) under stereographic projection. The disk within the circle is the
image of the Northern Hemisphere.

4Although we would not be able to check in the live test, the estimate ℓ ≃ π is indeed close to the exact value ℓ = 3.29890 · · · .
It’s only off by about 5 percent in a relative sense. While sneaking some calculator use in this footnote, let us also note that√√

4/3 = 1.07456 · · · and
√

3/π = 0.97720 · · · . The product
√√

4/3×
√

3/π = 1.05007 · · · , and ℓ = π(1.05007 · · · ).
5According to Wikipedia, stereographic projection was likely known by ancient Greek astronomers who used it to map the

celestial sphere onto the plane. The trajectories of the stars and planets could then be analyzed using planar geometry.
6These angles are standard in physics and engineering, but mathematicians often interchange the role of θ and ϕ.


