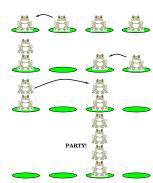
Round 1, UNM-PNM Statewide High School Mathematics Contest 2025-2026

Participant information and responses should be entered online at

https://esurvey.unm.edu/opinio/s?s=158554

Instructions (please read carefully)

- Over a continuous three-hour period, please attempt as many of the following ten problems as possible.
- All boxed answers should be integers. Write 2, not 2.0 or two. Do not include commas; write 100421, not 100,421.
- No calculators or external sources permitted.


Thank	vou	for	participating!

Student (LAST name, FIRST name):	
Student or teacher email address:	
Statem of teacher email address.	
Grade level:	
School or club:	
Teacher or coach:	

1. How many digits are there in the integer $2^{2029} \times 5^{2022}$?

ANSWER:	
TITUD VI LIC.	

2. A single frog sits on each of four lily pads in a row. One of the frogs then jumps onto the back of a neighbor, either to the left or right. This leaves a configuration with one empty pad, and one pad supporting a group of two frogs. The jumping continues subject to the rules that one frog must jump to a neighboring pad, two frogs must jump two pads as a group, and three frogs must jump three pads as a group. Frogs will not jump onto an empty pad, nor will a group split up once formed. The frogs all seek to occupy a single lily pad, a frog party! The figure shows one sequence of valid jumps resulting in a party. How many different jumping sequences result in a party?

ANSWER:

3. In the following equation a, b, c, and d are positive integers. Find a+b+c+d.

$$a + \frac{1}{b + \frac{1}{c + \frac{1}{d}}} = \frac{2025}{671}$$

ANSWER:	
---------	--

4. Chords AB and CD across the shown circle intersect at E and are perpendicular to each other. If the segments AE, EB, and ED have lengths 2, 6, and 3, respectively, then what is the square of the circle's diameter?

5. Based on the following *logic table*, with entries T (True) and F (False), what is the probability that the nested statement $((p \to q) \to r)$ is T? Here each of p, q, and r are either T or F. Express this probability as a whole fraction in lowest terms, and as your answer report the sum of this fraction's numerator and denominator.

p	q	$p \rightarrow q$
Т	Т	Т
Т	F	\mathbf{F}
F	\mathbf{T}	${ m T}$
F	F	${ m T}$

ANSWER:	

6. Five ducks are swimming around the UNM duck pond which (for the purposes of this problem) has a circumference of 36 meters. The ducks begin a race around the whole circumference of the duck pond at the same time. Suppose that Daud the duck swims at 9 meters per minute, Dewi the duck swims at 6 meters per minute, Dino the duck swims at 4 meters per minute, and Duru the duck swims at 3 meters per minute. Dyan the duck starts at 1 meter per minute, but Dyan's speed doubles every time another duck crosses the finish line. How many minutes does Dyan the duck take to finish the race?

ANSWER:	
---------	--

7. Given two positive integers a and b, their greatest common divisor gcd(a,b) is the largest positive integer which divides them both. For example, gcd(4,21) = 1, whereas gcd(6,21) = 3. Find the product ab, assuming that gcd(a,b) = 5 and in the expansion of $(a+bx)^4$ it turns out that the coefficient of x^2 equals the coefficient of x^3 .

ANSWER:	

8. A circular disk is divided by 362 equally spaced radii. What is the maximum number of non-overlapping areas into which the disk can be divided by the addition of a chord drawn across the bounding circle?

ANSWER:	
AINS WEIGH	

9. If R is expressed in lowest terms, what is the denominator of R?

$$R = \frac{1+3+5+7+\dots+999}{2+4+6+\dots+1000}$$

ANSWER:	
---------	--

10. Relative to the center of the unit circle, a radian can be defined as the angle subtended by a unit-length arc on the unit circle. Likewise, relative to the center of the unit sphere, a steradian can be defined as the solid angle subtended by a unit-area portion (of any shape) on the unit sphere. The solid angle subtended by the unit sphere itself is 4π steradians.

Consider a round sphere, with radius $r = \sqrt{\frac{8\sqrt{3}}{\pi}}$, and two great circles which emanate from its north pole NP. At NP they intersect at a right angle, and together with a portion of the equator form an equilateral spherical triangle; see the figure. What is the side length of an equilateral triangle with the same area as this spherical triangle?

ANSWER:
