
UNM-PNM Statewide High School Mathematics Contest LVII
Round-2 Solutions with Comments

Dear Students,
If you have suggestions about the Contest, or if you have a different solution to any of this year’s
second-round problems, please mail them to:

Professors Stephen Lau and Cristina Pereyra
Department of Mathematics and Statistics
1 University of New Mexico
MSC01 1115
Albuquerque, NM 87131

or email them to: lau@math.unm.edu and crisp@math.unm.edu. Please remember that you can

find information about past contests at http://mathcontest.unm.edu

We express our gratitude to Coach Sean Choi for the time spent with students in Albuquerque and

Los Alamos, and for running online sessions to review problems from the first and second rounds.

We also thank Sean and Bill Cordwell for sharing their solutions with us. As you will see, we drew

on students’ work for many of the solutions presented below. Finally, thanks to all participants,

their teachers, and families. You are an inspiration for us!

1. A two-pan balance scale is used to identify a counterfeit coin via weight comparisons.

(a) Nine coins are identical in appearance, but one is counterfeit. The counterfeit coin
is heavier than the others. How can you guarantee identification of the counterfeit
coin with at most two scale comparisons?

(b) Find the least number of scale comparisons necessary to guarantee identification of
one heavy counterfeit coin among 27 coins which are identical in appearance.

Preface. Some students said they would first use their hands (a two-pan balance of sorts!)
to compare coins until the heavier counterfeit coin had been identified, and then confirm
the identification with the two-pan balance. This proposal assumes that a person is able to
discern the weight difference between a genuine coin and the counterfeit. However, if the
weight difference is small enough, a person, no matter how well-trained, will not be able to
discern the difference. Implicit in the problem statement is the assumption that our two-
pan balance can discern the weight difference. No matter how small the difference, upon
comparison of two groups of coins (each group with the same number of coins, with one
group containing the counterfeit), the two-pan balance will perceptibly tilt.

Other students assumed that the counterfeit was twice as heavy as the other coins. Would
such an additional piece of information, not stated in the problem, lead to a different com-
parison strategy than the ones described below?
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In presenting your arguments, many of you sketched some splendid diagrams!

Solution, based in part on an approach given by Inler Lu, 8th grade, Desert Ridge Middle
School. For (a) our strategy will produce a sequence S2, S1, S0 of sets, where Sk holds 3k

coins, with the counterfeit always among them. The singleton set S0 will then have the
counterfeit coin as its only element. First, let S2 hold the initial 9 coins, and then randomly
divide S2 into three subsets A1, B1, C1, where each subset holds 3 coins. Using the scale,
compare the weights of A1 and B1. Either (i) A1 and B1 weigh the same, and we know the
fake coin is in C1, or (ii) one of A1 and B1 weighs more. Say A1 weighs more. Then we know
that the fake coin is in A1. Either way, we have determined that the fake coin lies within
a subset S1 (either A1, B1, or C1) of 3 coins. Now randomly divide S1 into three singleton
sets A0, B0, C0, where each holds a single coin. A second use of the scale comparing A0

against B0 identifies the fake coin. Indeed, if A0 and B0 have equal weight, then C0 holds
the counterfeit. Otherwise, the heavier of A0 and B0 holds the counterfeit. For convenience
below, we let S0 (either A0, B0, or C0) be the final singleton set holding the counterfeit coin.

For (b) let S3 be the initial set of 27 coins, and randomly divide this set into three subsets
A2, B2, C2, where each subset holds 9 coins. Thus, similar to (a), we start with three sets,
although now each set has 9 coins. A single use of the scale, comparing the weights of A2

and B2, will then identify which of these three sets contains the counterfeit; let this set be
S2. Now we have a set S2 of 9 coins containing the fake coin, and so are precisely back to
the scenario in part (a). Therefore, after the first scale comparison needed to identify S2,
another two comparisons will be needed to get down to S0, the singleton set holding the
fake. Therefore, three scale comparisons will ensure identification of the counterfeit coin.

We still need to justify that, starting with the 27-coin scenario, 3 is the least number of scale
comparisons needed to identify the counterfeit. Evidently, a starting collection of 2 or more
coins will require at least one scale comparison to identify the fake coin. Perhaps not as
obvious, if we start with between 4 and 9 coins, then we will need at least 2 comparisons.
Why? For a first scale comparison, we will need to divide the starting collection into groups
A, B, and C, where A and B are non-empty and have the same number of coins, and C
might be empty (have no coins). Think of this initial division as preparing sets A and B
for the first comparison. At least one of the groups A, B, C will have 2 or more coins.
For example, with a 4-coin starting collection, the possible splits into A,B,C are 2-2-0 and
1-1-2. In the first case, we compare and keep the heaviest of the 2-coin groups (the A
and B groups), but would then need one more comparison to identify the counterfeit. In
the second case, we compare the two single-coin groups (again, the A and B groups), and
might get lucky and find the counterfeit, should one of these groups prove heavier than the
other. However, should these two single-coin groups have the same weight, then we will
need a second comparison to identify the counterfeit among the leftover 2-coin group (the C
group). If we start with a collection of between 10 and 27 coins, then we will need at least 3
comparisons. Why? To make an initial comparison and learn something, we again need to
divide the collection into groups A, B, and C, where A and B are non-empty and have the
same number of coins, and C might be empty. This initial division will always result in a
group with 4 or more coins. For example, with 10 coins this initial division could be 5-5-0,
4-4-2, 3-3-4, 2-2-6, 1-1-8. After the first comparison of A with B, the counterfeit coin could
be in a group (either A, B, or C) that has 4 or more coins; to identify it from that group, we
will need at least 2 more comparisons. This argument shows that identification of the fake
coin requires a minimum of 3 comparisons, when starting with between 10 and 27 coins.
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Algorithm 1 Identification of a heavy fake coin among a set of N = 3p coins.
We assume p = log3N ≥ 1 is an integer. On exit S0 is the singleton set holding the fake.

1: Let Sp be the initial collection of N = 3p coins.
2: for k = p down to 1
3: Divide Sk into subsets Ak−1, Bk−1, Ck−1, each with 3k−1 coins.
4: if Ak−1 = Bk−1 ▷ Compare the weights of Ak−1 and Bk−1.
5: Set Sk−1 equal to Ck−1.
6: else
7: if Ak−1 > Bk−1

8: Set Sk−1 equal to Ak−1.
9: else
10: Set Sk−1 equal to Bk−1.
11: end
12: end
13: end

Comments.

• Our strategy works for a collection of 3p coins, with a single heavy fake coin among them.
The process is given in Algorithm 1, and it requires p comparisons. Akilan Sankaran,
12th grade, Albuquerque Academy, described this algorithm.

• Many students presented a natural strategy that we call divide and conquer. You choose
from the starting collection two equal-number groups which are as large as possible, leaving
no coin out (when you have an even number of coins) or just one coin out (when you have an
odd number of coins). This strategy allows one to get lucky; it might identify the counterfeit
coin after the first comparison, at least when you have an odd number of coins. The downside
is that you may also be unlucky, needing more comparisons than the minimum necessary.

For (a), divide the 9 coins into two 4-coin groups, with 1 coin left out. Compare the two
4-coin groups, if they a weigh the same, then the counterfeit coin is the one left out, and
you are done! You were lucky!! However, if one of the 4-coin groups proves heavier than the
other, then you know the counterfeit coin is in that group. Subdivide those 4 coins in two
2-coin groups, and compare them. One group will be heavier than the other, and you now
know that the counterfeit coin is in that 2-coin group. You then need one more comparison
to identify the counterfeit, for a total of 3 comparisons.

For (b), divide the 27 coins into two 13-coin groups, with 1 coin left out. Compare the two
13-coin groups; if they weigh the same, the counterfeit coin is the coin left out, and you are
done! You were lucky, and found the counterfeit coin with just one comparison!! However,
if one of the 13-coin groups proves heavier than the other, then you know the counterfeit
coin is in that group. Subdivide that 13-coin group into two 6-coin groups, with 1 coin left
out. Compare the two 6-coin groups; if they weigh the same, then counterfeit coin is the
coin left out, and you are done! You were lucky, and found the counterfeit coin with two
comparisons!! If one of the 6-coin groups proves heavier than the other, then you know that
the counterfeit coin is in the heavier 6-coin group. Subdivide that 6-coin group in two 3-coin
groups, and compare. The heavier 3-coin group has the counterfeit coin. You need one more
comparison to identify the counterfeit coin, for a total of 4 comparisons.

Divide-and-conquer is not optimal; it does not guarantee identification of the counterfeit
coin with 2 (for 9 coins) or 3 (for 27 coins) comparisons.
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2. Suppose M quanta of energy are distributed in N one-dimensional quantum mechanical
oscillators. A key question (in quantum statistical mechanics!) is how many possible ways
can the indistinguishable quanta be distributed. What is the answer for the scenario M = 3
and N = 4, with one possible state shown in the figure?

quanta

oscillator

Solution 1. Dusty Dixon, 7th grade, Desert Ridge Middle School, assessed this problem
as follows: “Those fancy words are to throw you off. Think of it as a simple question like you
have 3 apples and 4 baskets.” Exactly right! Many students listed all possibilities correctly
and counted. Most organized the search as follows:

(i) All three quanta are in one oscillator. There are 4 oscillators, hence 4 configurations.
(ii) Two quanta are in one oscillator, the other quanta in another oscillator. The two

quanta can be in any of the 4 oscillators, and the third quanta is then left to choose
among the 3 remaining oscillators, for a total of 3× 4 = 12 configurations.

(iii) Each of the three quanta are in three different oscillators. There is one empty oscil-
lator that can be any of the 4 oscillators. So there are 4 configurations.

Respectively, these cases correspond to configurations in which the number of empty oscil-
lators is 3, 2, and 1. Figure 1 enumerates all possible configurations. The leftmost grouping
shows the 4 configurations in which all three quanta are placed in a single oscillator. The
middle grouping shows the 12 configurations in which two quanta are placed in one oscillator
and one quanta is placed in another oscillator. Finally, the rightmost grouping shows the 4
configurations in which each oscillator holds at most one quanta. The count is 20.

Figure 1. Possible configurations.

Solution 2. Some contestants referred to this approach as “stars and bars” or “sticks and
stones”. We use “quanta (q) and walls (w)”. We keep track of the oscillators by the “walls”
between them. Then, the configuration shown in the problem statement may be represented
as {qwwqqw}. Since there are N = 4 oscillators, there are N − 1 = 3 walls. If all of
the quanta and walls were distinguishable, we would have M + N − 1 = 3 + 4 − 1 = 6
distinguishable objects, and the total number of arrangements would be 6!. However, since
the quanta are in fact indistinguishable from each other, and so are the walls, we divide both
by the 3! = 6 permutations of the quanta and the (4 − 1)! = 3! = 6 permutations of the
walls. Hence the distinct number of configurations is

6!

3!3!
= 20.
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This approach also affords the general solution. Indeed, with N and M unspecified,

(M +N − 1)!

M !(N − 1)!

is the number of allowable configurations.

Solution 3, due toOwen Petersen, 11th grade, ASK Academy. Here we work inductively
on the number of oscillators.

• For N = 1 oscillator, all M quanta must be in that oscillator, so 1 configuration.

• For N = 2 oscillators, we can have M1 quanta in the first oscillator and M2 quanta in the
second, subject to M1 +M2 = M . The number M2 is determined by M1 and the fixed value
of M . Moreover, M1 can take any value between 0 and M ; there are M + 1 configurations.

• For N = 3 oscillators, we can have M1, M2, and M3 quanta in the first, second, and third
oscillators, respectively, where M1+M2+M3 = M . We can determine M3 from M1+M2 and
the fixed value of M . Let k = M1 +M2. Then 0 ≤ k ≤ M , and, by the reasoning in the last
bullet point, for each possible k there are k+1 ways the k quanta can be distributed among
the first and second oscillators. Therefore, the total number of allowable configurations is

M∑
k=0

(k + 1) = 1
2
(M + 1)(M + 2).

This is 10 when M = 3, as we can confirm.

(1) k = 0. Both first and second oscillators are empty, third oscillator has 3.

(0, 0, 3)

(2) k = 1. First and second oscillators have total of 1, third oscillator has 2.

(1, 0, 2), (0, 1, 2)

(3) k = 2. First and second oscillators have total of 2, third oscillator has 1.

(1, 1, 1), (2, 0, 1), (0, 2, 1)

(4) k = 3. First and second oscillators have total of 3, third oscillator is empty.

(3, 0, 0), (0, 3, 0), (2, 1, 0), (1, 2, 0)

• For N = 4 oscillators, we can have M1, M2, M3, and M4 quanta in the first, second, third,
and fourth oscillators, respectively, where M1+M2+M3+M4 = M . Now we can determine
M4 from M1,M2,M3 and the fixed value of M . Let ℓ be a possible value for M1 +M2 +M3.
Then by the reasoning of the last bullet, there are 1

2
(ℓ+1)(ℓ+2) ways that the ℓ quanta can

be distributed into the first three oscillators, where the remaining M − ℓ quanta must reside
in the fourth oscillator. Since 0 ≤ ℓ ≤ M , the total number of allowable configurations is

1
2

M∑
ℓ=0

(ℓ+ 1)(ℓ+ 2).

Using arguments based on telescoping series or induction (neither given here), one finds

1
2

M∑
ℓ=0

(ℓ+ 1)(ℓ+ 2) = 1
6
(M + 1)(M + 2)(M + 3).
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However, this general expression is not needed here. Indeed, for M = 3 we clearly have

1
2

3∑
ℓ=0

(ℓ+ 1)(ℓ+ 2) = 1
2

(
2 + 6 + 12 + 20

)
= 20.

This approach can be used to establish the result(
M +N − 1

M

)
=

(M +N − 1)!

M !(N − 1)!

for arbitrary N and M found above by the “stars and bars” method. Indeed, this expression
gives 1,M+1, 1

2
(M+1)(M+2), and 1

6
(M+1)(M+2)(M+3) forN = 1, 2, 3, 4. Assuming that

the formula is valid for M quanta and N oscillators, by the arguments above the allowable
configurations for M quanta and N + 1 oscillators will be

M∑
p=0

(
p+N − 1

p

)
=

(
M +N

M

)
,

where the equality here follows from the hockey-stick identity from combinatorics.

Comments. The numberM of quanta determines the total energy of the system, the system
being our collection of N oscillators. The precise identification is a bit strange and relies on
the quantum mechanics of a 1-dimensional harmonic oscillator. First, an oscillator has an
angular frequency ω; think of ω as how fast it oscillates. We assume all of the oscillators in
the collection have the same ω. The energy Ek of the kth oscillator is then

Ek = ℏω(nk +
1
2
),

where ℏ is a fundamental constant of nature (2πℏ is Planck’s quantum of action) and nk

is the number of quanta in the kth oscillator. Notice that when nk = 0 (no quanta in the
oscillator), the oscillator still has a nonzero energy 1

2
ℏω. This is a peculiar aspect of quantum

mechanics! The total energy E of the system is therefore

E =
N∑
k=1

Ek =
N∑
k=1

(nk +
1
2
)ℏω,

In the “microcanonical ensemble” the total energy E is held fixed. We write this fixation as
N∑
k=1

nk =
E

ℏω
− N

2
≡ M,

with M the total number of quanta in all oscillators. This means that E = EM depends on
M and can only take discrete values. We want to count the number Ω(E,N) of allowable
configurations for an attainable fixed energy E = EM . In the parlance of quantum statistical
mechanics Ω(E,N) is the number of microstates. We have solved this problem above with
the “stars and bars” method:

Ω(E,N) =
(M +N − 1)!

M !(N − 1)!
=

(E/(ℏω) + 1
2
N − 1)!

(E/(ℏω)− 1
2
N)!(N − 1)!
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3. Simplify the expression
√

3 + 2
√
2−

√
3− 2

√
2.

Preface. Before presenting solutions, we note that on non-negative real numbers the square-
root function is increasing; that is, for 0 ≤ x1 < x2 we have 0 ≤ √

x1 <
√
x2. Put differently,

the square-root function preserves order relations between non-negative real numbers. From
this statement and the observation 8 < 9, we conclude that 2

√
2 < 3. It follows that

0 < 3− 2
√
2 < 3 + 2

√
2,

and, again using the statement about the square-root function, that

0 <

√
3− 2

√
2 <

√
3 + 2

√
2.

We conclude that the expression in the problem statement is a strictly positive number.

Solution 1. Squaring the expression gives(√
3 + 2

√
2−

√
3− 2

√
2
)2

= (3 + 2
√
2)− 2

√
3 + 2

√
2

√
3− 2

√
2 + (3− 2

√
2)

= 6− 2

√
(3 + 2

√
2)(3− 2

√
2)

= 6− 2
√
9− 8

= 4.

This shows that the expression is either 2 or −2. However, we know from the argument
above that the expression is positive, so the expression must equal 2.

Solution 2. Several students presented this alternative solution. Consider squaring the
positive numbers

√
2− 1 and

√
2 + 1. We find

(
√
2− 1)2 = 3− 2

√
2, (

√
2 + 1)2 = 3 + 2

√
2,

showing that√
3− 2

√
2 =

√(√
2− 1

)2
=

√
2− 1,

√
3 + 2

√
2 =

√(√
2 + 1

)2
=

√
2 + 1.

With these formulas.√
3 + 2

√
2−

√
3− 2

√
2 =

(√
2 + 1)−

(√
2− 1) = 2.

Comments. For x > 0, we have 0 < y =
√
x if, and only if, y2 = x. That y2 = x has a

unique solution y > 0 for each real number x > 0 is a deep fact, rooted in core properties of

the real numbers. For example,
√
1 = 1 since 12 = 1,

√
9 = 3 since 32 = 9,

√
1
25

= 1
5
since

(1
5
)2 = 1

25
. In the solutions we encountered a few non-rules for square roots, that were

nonetheless proposed for this problem, leading to incorrect answers. For x1, x2 > 0:

• It is false that
√
x1 + x2 =

√
x1 +

√
x2. The example x1 = x2 = 1 illustrates this point,

since
√
2 = 1.4 · · · ̸= 2 = 1 + 1 =

√
1 +

√
1. However, the inequality

√
x1 + x2 <

√
x1 +

√
x2

holds for all x1, x2 > 0 (why?).
• It is false that if in addition x1 > x2, then

√
x1 + x2 −

√
x1 − x2 =

√
2x2. The example

x1 = 2, x1 = 1 illustrates this point, because
√
3−

√
1 =

√
3− 1 = 1.73 · · · − 1 = 0.73 · · · ≠

1.4 · · · =
√
2. However, the inequality

√
x1 + x2 −

√
x1 − x2 <

√
2x2 holds for all x1 > x2 >

0 (why?).
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4. In the figure the isosceles trapezoid ABCD has side AB parallel to side CD, sides AD
and BC are of equal length, and the diagonals AC and BD are perpendicular. If the length
of the side AB is 1 and the length of the side AD is 5, find the length of the side CD.

B

D C

A

Solution 1. Let the segments AC and BD intersect at the point O. Then AOB is a

45◦ − 90◦ − 45◦ triangle, with base length 1. The sides AO and BO have length
√

1
2
. Then

AOD is a right triangle with hypotenuse AD of length 5 and side AO of length
√

1
2
. The

other side OD has length
√

25− 1
2
= 7

√
1
2
. Triangle DOC is then also a 45◦ − 90◦ − 45◦

triangle, with two sides of length 7
√

1
2
. The hypotenuse DC then has length 7

√
1
2

/√
1
2
= 7.

Solution 2. Inspired by the work of Joshua Bala, 8th grade, Mandela International
Magnet School. Refer to Fig. 2. Let y = |CD|, the length we are trying to compute. Let G
be the point on CD such that BG is parallel to AD. Since AB is parallel to CD, it must
be that |BG| = |AD| = 5 and that |DG| = |AB| = 1. Therefore, |CG| = |CD| − 1 = y − 1.
Since the trapezoid is isosceles, |BG| = |AD| = |BC|, and so the triangle ∆GBC is isosceles.
Let H be the foot of the perpendicular line through B to the segment CD (the black dotted
line in the figure). Since ∆GBC is isosceles, H is halfway between G and C, so that
|HG| = |CH| = |CG|/2 = (y − 1)/2. We can calculate |BH| from the hypothesis that the
diagonals are perpendicular, which we have not used yet. Indeed, let O be the intersection
point of the diagonals, the right triangles ∆AOB and ∆COD are similar isosceles triangles
(inherited from the hypothesis that the trapezoid is isosceles), with each a 45◦ − 90◦ − 45◦

triangle. Whence their heights are half the length of their bases (respectively |AB| = 1 and
|CD| = y). The sum of these heights is therefore (1 + y)/2. Note that these heights form a
segment (the blue dotted line in the figure) joining the middle point of AB with the middle
point of CD; this segment is parallel to BH and of equal length, hence |BH| = (y + 1)/2.
By the Pythagorean theorem on the right triangle ∆CHB,

25 = |BC|2 = |BH|2 + |CH|2 = (y + 1)2

4
+

(y − 1)2

4
=

y2 + 1

2
,

whence y2 = 50 − 1 = 49 and y = 7. Although we have found the answer, we may further
compute |BH| = (y + 1)/2 = 4 and |CH| = (y − 1)/2 = 3. The triangle ∆BCH is a
5-3-4 triangle, as a number of students guessed, including Joshua, but this is a consequence
of the hypothesis that the diagonals are perpendicular. If you guessed correctly, then you
concluded that |CH| = |HG| = 3 and y = |CH| + |HG| + |GD| = 3 + 3 + 1 = 7, and got
the right answer by chance!
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B

D

A

H

O

CG

Figure 2.

BA

O

h

x CD E F

Figure 3.

Solution 3. Inspired by the work of Ry Pepper, 10th grade, Moreno Valley High School.
Here we look at A = A(ABCD), the area of the trapezoid, in two different ways. Refer to
Fig. 3. First, let E and F be the feet of the perpendiculars dropped from A and B onto CD,
respectively (note that F is the H from Solution 2, but E ̸= G). Let h = |AE| = |BF | and
x = |ED| = |CF |. Then, because |AB| = |FE| = 1, we have |CD| = |CF |+ |FE|+ |ED| =
x+ 1 + x = 1 + 2x, and the area of the whole trapezoid is

A =
|AB|+ |CD|

2
h =

1 + 1 + 2x

2
h = (1 + x)h.

The triangle ∆DEA is a right triangle, whence by the Pythagorean theorem,

25 = |AD|2 = |DE|2 + |AE|2 = x2 + h2,

and so h =
√
25− x2. With this result, the area is a function

(1) A = (1 + x)
√
25− x2

solely of x. Second, the area of the trapezoid is the sum of the areas of the triangles ∆ADC
and ∆ABC. Let O be the intersection point of the diagonals, which are assumed to be
perpendicular to each other. Then, as seen in Fig. 3, we have A(ADC) = 1

2
|AC| · |DO| and

A(ABC) = 1
2
|AC| · |BO|, so that

A = A(∆ADC) +A(∆ABC) = |AC| |DO|+ |OB|
2

=
|AC| · |DB|

2
=

|AC|2

2
.

Now, the triangle ∆ACE is a right isosceles triangle, because the angle ∠EAC = 90◦ −
∠CAB = 45◦. Therefore, |AC| =

√
2|EC| =

√
2(|EF |+ |FC|) =

√
2(1 + x). We then have

(2) A =
|AC|2

2
=

2(1 + x)2

2
= (1 + x)2.

Equating Eqs. (1) and (2), we conclude that (1 + x)2 = (1 + x)
√
25− x2. Since x > 0,

the factor 1 + x > 0, and so it can be canceled to reach (1 + x) =
√
25− x2. Squaring

both sides, we get (1 + x)2 = 25 − x2. Expanding the square on the left-hand side, we get
1 + 2x + x2 = 25 − x2. Finally, subtraction of 25 and addition of x2 on both sides yields
2x2 + 2x− 24 = 0. The left-hand side can be factored, giving (x− 3)(2x + 8) = 0, and the
solutions to this equation are x = 3 or x = −1

4
. Since x > 0, we must choose x = 3. We

conclude that

h =
√
25− x2 =

√
25− 9 =

√
16 = 4, and |CD| = 1 + 2x = 1 + 6 = 7.

From Eqs. (1) and (2), we get (1 + x)h = (1 + x)2, and deduce h = x+ 1 = 3 + 1 = 4.
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5. A sequence a1, a2, a3, . . . of numbers is said to be an arithmetic progression if each
term (other than the first) is the previous term plus a fixed number r. This means a2 =
a1 + r, a3 = a2 + r, and, generally, an = an−1 + r for n > 1. For example, the sequence
3, 7, 11, 15, 19, 23, 27, 31, 35, . . . is an arithmetic progression with r = 4 (presuming the pat-
tern continues). The first three terms of an arithmetic progression of positive numbers are

a1 = tanx, a2 = cosx, a3 = secx,

for some angle x in the first quadrant.

(a) What is the angle x?

(b) What is r?

(c) What position does cot x occupy in the sequence?

Solution 1. The assumed arithmetic progression gives the equations

(3) cosx = tanx+ r, secx = cosx+ r,

or, since tanx = sinx/ cosx and sec x = 1/ cosx,

cos2 x = sinx+ r cosx, 1 = cos2 x+ r cosx.

Subtraction of the last two expressions yields

1− cos2 x = cos2 x− sinx

or 2 sin2 x + sin x − 1 = 0 which has solutions sinx = −1
4
± 1

4

√
9 = −1, 1

2
, or x = 3

2
π, 1

6
π

(modulo 2π). Now go back to one of the above equations, to find x = 3
2
π will not work.

Indeed, both tanx and secx are undefined at this value of x. In any case, x = 3
2
π is not in

the first quadrant, so our angle is x = 1
6
π. Now cos 1

6
π = 1

2

√
3, so from the last equation

in (3)
2√
3
=

√
3

2
+ r =⇒ r =

2√
3
−

√
3

2
=

4− 3

2
√
3

=
1

2
√
3

=⇒ r =

√
3

6
.

For the final part, we check

a4 = sec(1
6
π) +

√
3

6
=

2√
3
+

√
3

6
=

4
√
3 +

√
3

6
=

5
√
3

6
.

But this is not

cotx =
cosx

sinx
=

√
3/2

1/2
=

√
3.

Let’s try then

a5 = a4 + r =
5
√
3

6
+

√
3

6
=

√
3.

So cot x occupies the 5th position.

Solution 2. A number of students rightfully guessed that the angle they were looking for,
must be one of the canonical angles in the first quadrant: 0◦, 30◦, 45◦, 60◦, or 90◦. They
experimented a little and concluded that 30◦ (which in radians is 1

6
π) is the correct angle.

From then on they could figure out the rest of the problem. Note, however, that this approach
leaves open the possibility that another angle in the first quadrant might also work. The first
solution shows that 30◦ is the only first-quadrant angle yielding an arithmetic progression of
the assumed form.
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6. In how many ways can one choose a black square and a white square on an 8×8 chessboard,
so that the chosen squares do not lie on the same row or on the same column?

Solution 1. We could notice that for each square Q there are 24 = 32 − 8 squares of the
opposite color that can be paired with Q. There are 64 squares Q, and every pair is counted
twice, so the total number of pairs is 768 = 1

2
(24 × 64). Many students avoided double

counting by assuming that the “first” square of any pair is of a definite color (black or white,
it does not matter). There are 32 squares of one color, and 24 of the other color that are
not on the same row or column, for a total of 32× 24 = 768 pairs.
If our chessboard had been 2024 × 2024, then we could still have used this method. For

each square Q there are 1
2
20242 square of the opposite color. Of these 1012 occupy the same

row as Q and 1012 occupy the same column. Whence there are

20242

2
− 2024 = 2024(1012− 1) = 2024× 1011 = 2, 046, 264

squares of the opposite color that can be paired with Q. There are 20242 squares Q and
every pair is counted twice, so the total number of pairs is

20242 × 2024× 1011

2
= 20242 × 1012× 1011.

Solution 2. Emily Yau, 9th grade, La Cueva High School, presented an argument using
complementary counting. There are 32 black squares and 32 white squares, if we choose
a black square first and a white square second, there are 32 × 32 = 1024 ways to choose
the pairs (the choice of a definite color first avoids double counting). Let us find how many
ways there are to pick squares so that they do lie on the same row or column. Each square
has 8 squares of the opposite color that lie on the same row or column. Therefore, there
are 32 × 8 = 256 ways to choose pairs of squares of opposite colors that lie on the same
row/column. Subtracting, we find that there are then 1024−256 = 768 ways to choose pairs
of squares of opposite color that do not lie on the same row/column.

Figure 4. Refer to Solutions 3 and 5.

Solution 3. Adrian Medin, 8th grade, Los Alamos Middle School, partitioned the chess-
board as shown in Fig. 4. Then we can count the number of white squares on consecutive
decreasing inverted L’s (that is, Γ’s): 7, 7, 5, 5, 3, 3, 1, 1, and pair each with 24 allowed
black squares. This process avoids double counting, and yields the total count

168 + 168 + 120 + 120 + 72 + 72 + 24 + 24 = 768.

Solution 4. Lydia Davis, 10th grade, Los Alamos High School, and Dylan Dencklau,
11th grade, El Dorado High School argued as follows.
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(a) (b) (c) (d) (e) (f) (g)

Figure 5. Refer to Solution 4.

Our chessboard is 8×8 with 64 squares, 32 black and 32 white. We will count starting from
the first column. Figure 5(a) depicts selection of a first square from the first column of the
chessboard, with an example selection (the red dot) of both black and white shown. There
are 8 possible selections, but whichever selection there are then 24 possible choices (the red
crosses) for the second square of the opposite color which is neither in the first column nor
in the row of the selected first square. Thus, our choices here allow for 192 = 8× 24 pairs.
Likewise, Figures 5(b)-(g) depict selection of a first square from the second, third, fourth,

fifth, sixth and seventh columns of the chessboard, with an example selection (the red dot) of
both black and white shown. There are again 8 possible selections, but whichever selection
there are then 21, 17, 14, 10, 7, and 3 possible choices (the red crosses) for the second square
of the opposite color which is not in the second, third, fourth, fifth, sixth, and seventh
columns, respectively, and also not in the row of the selected first square. By not allowing
the second square to be drawn from the appropriate previous columns, we rule out pairs of
squares already accounted for in the counting. Thus, our choices here allow for 168 = 8×21,
136 = 8× 17, 112 = 8× 14, 80 = 8× 10, 56 = 8× 7, and 24 = 8× 3 pairs.
We have a total of 768 = 192+ 168+ 136+ 112+ 80+ 56+ 24 pairs of squares, one white

and one black, such that they are not on the same row or column. Yuiko Yamagushi, 8th
grade, Los Alamos Middle School, used this idea, working with rows instead of columns, and
drew a picture worth a thousand words similar to this one:

24 24 24 24 24 24 24 24

21 21 21 21 21 21 21 21

17 17 17 17 17 17 17 17

14 14 14 14 14 14 14 14

10 10 10 10 10 10 10 10

7 7 7 7 7 7 7 7

3 3 3 3 3 3 3 3

0 0 0 0 0 0 0 0

8× 24

8× 21

8× 17

8× 14

8× 10

8× 7

8× 3

8× 0

Yuiko’s picture had shading to distinguish black and white squares, and to facilitate counting!
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Comment. Were our chessboard 2024× 2024, this is not a method we would like to use to
count the number of pairs. However, there is some rhyme to what has been done, and we
might seek formulas in terms of n, the number of columns.

Solution 5. Aditi Ganti, 10th grade, La Cueva HS, gained insight by working with
smaller-sized chessboards, seeking a pattern. First count the number Ln of pairs of black
and white squares with at least one square in the first row or the first column (an inverted
L, or Γ, shape; see Fig. 4) of an n×n chessboard, but with the squares not on the same row
or column. To these, add the number of allowed pairs of black and white squares that can
be drawn from the remaining (n− 1)× (n− 1) chessboard in the SW corner. Let pn be the
number of allowable pairs in an n× n chessboard. The following recursion formula holds:

(4) pn = Ln + pn−1.

Let us see how this works for n = 2, 3, . . . , 8, which some students attempted without
formalizing the recurrence. When calculating Ln, we must avoid double counting pairs for
which one square lies on the first row and the other on the first column.

2×2 chessboard: There are 0 such pairs. Hence p2 = 0.

3×3 chessboard: Each square on the first column and the first row (5 of them) has exactly
2 squares of the opposite color left to pair with. We have double counted 2 pairs that have
both squares in the first row and column, so L3 = 5 × 2 − 2 = 10 − 2 = 8. Afterwards, we
have to search on a 2× 2 chessboard, but p2 = 0. Hence p3 = L3 + p2 = 8 + 0 = 8.

4×4 chessboard: Each square on the first column and the first row (7 of them) has exactly
4 squares of the opposite color left to pair with. We have double counted 4 pairs that have
both squares in the first row and column, so L4 = 7 × 4 − 4 = 28 − 4 = 24. Afterwards,
we have to search on a 3 × 3 chessboard, but we know there are p3 = 8 pairs left. Hence
p4 = L4 + p3 = 24 + 8 = 32.

5×5 chessboard: Each square on the first column and the first row (9 of them) has exactly
8 squares of the opposite color left to pair with. We have double counted 8 pairs that have
both squares in the first row and column, so L5 = 8 × 9 − 8 = 72 − 8 = 64. Afterwards,
we have to search on a 4 × 4 chessboard, and we know there are p4 = 32 pairs left. Hence
p5 = L5 + p4 = 64 + 32 = 96.

6×6 chessboard: Each square on the first column and the first row (11 of them) has exactly
12 squares of the opposite color left to pair with. We have double counted 12 pairs that have
both squares in the first row and column, so L6 = 11 × 12 − 12 = 120. Afterwards, we
have to search on a 5 × 5 chessboard, and we know there are p5 = 96 pairs left. Hence
p6 = L6 + p5 = 120 + 96 = 216.

7×7 chessboard: Each square on the first column and the first row (13 of them) has exactly
18 squares of the opposite color left to pair with. We have double counted 18 pairs that have
both squares in the first row and column, so L7 = 13×18−18 = 234−18 = 216. Afterwards,
we have to search on a 6× 6 chessboard, and we know there are p6 = 216 pairs left. Hence
p7 = L7 + p6 = 216 + 216 = 432.

8×8 chessboard: Each square on the first column and the first row (15 of them) has exactly
24 squares of the opposite color left to pair with. We have double counted 24 pairs that have
both squares in the first row and column, so L8 = 15×24−24 = 360−22 = 336. Afterwards,
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we have to search on a 7× 7 chessboard, and we know there are p7 = 432 pairs left. Hence
p8 = L8 + p7 = 336 + 432 = 768.
For a large chessboard this step-by-step approach would prove too burdensome, so let us

formalize what we have done explicitly for the cases n = 2, 3, . . . , 8. The number of squares
in the first row and first column of an n × n chess board is 2n − 1 (where the −1 avoids
double counting of the NW corner square which lies on both the first row and first column).
Let us refer to this set of squares as the first-L (although first-Γ would conjure up the better
picture). After removing the row and column that intersect at a square Q in the first-L, we
wish to count the number of opposite-color squares left over to be paired with Q.
When n is odd, there are 1

2
(n − 1)2 opposite-color squares left over to pair with Q, so

the total number of squares that can be paired with squares in the first-L is naively 1
2
(2n−

1)(n − 1)2. However, there are allowable pairs with both squares on the first-L, and these
have been double counted. To correct, we must remove a factor of 1

2
(n− 1)2, yielding

Ln = 1
2
(2n− 1)(n− 1)2 − 1

2
(n− 1)2 = (n− 1)3, provided n is odd.

This formula gives our earlier counts: L3 = 8 = 23, L5 = 64 = 43, and L7 = 216 = 63. When
n is even, there are 1

2
[(n − 1)2 − 1] opposite-color squares that can be paired with a Q in

the first-L, so the total number of squares that can be paired with squares in the first-L is
naively 1

2
(2n− 1)[(n− 1)2− 1]. However, we have again double counted pairs for which both

squares lie on the first-L. With the appropriate correction,

Ln = 1
2
(2n− 1)[(n− 1)2 − 1]− 1

2
[(n− 1)2 − 1] = (n− 1)3 − (n− 1), provided n is even.

We again get our earlier counts: L4 = 24 = 33−3, L6 = 120 = 53−5, and L8 = 336 = 73−7.
We can now use the recurrence (4) and the fact that p2 = 0 to conclude that

pn = L3 + L4 + L5 + · · ·+ Ln

=
(
23 + 33 + 43 + · · ·+ (n− 1)3

)
−
(
3 + 5 + 7 + · · ·+ ⌊n/2⌋

)
=

(
13 + 23 + 33 + 43 + · · ·+ (n− 1)3

)
−
(
1 + 3 + 5 + 7 + · · ·+ (2k − 1)

)
.

Here k depends on the parity of n: if n is even, then n = 2k, and if n is odd, then n = 2k−1.
With floor notation, k = ⌊n/2⌋, where ⌊x⌋ is the largest integer smaller or equal to x. The
sum of the first N cubes can be checked by induction to be the square of the sum of the first
N natural numbers, 13 + 23 + · · · + N3 = (1 + 2 + 3 + · · · + N)2. The sum of the first N
natural numbers is 1

2
N(N + 1), that is 1 + 2 + 3 + · · ·+N = 1

2
N(N + 1), as can be checked

by a telescoping-sum argument, induction, or Gauss’ summation trick. The sum of the first
k odd integers is k2, namely 1+3+5+ · · ·+(2k−1) = k2. This result can also be confirmed
with telescoping sums or induction. Setting N = n− 1 and k = ⌊n/2⌋, we conclude that

pn = 1
4
(n− 1)2n2 − ⌊1

2
n⌋2 =

{
1
4
(n− 2)n3 if n is even

1
4
(n+ 1)(n− 1)3 if n is odd.

.

As a sanity check, let us verify that this formula yields the correct p8:

p8 =
1
4
(8− 1)2 · 82 − ⌊1

2
· 8⌋2 = 1

4
72 · 82 − 42 = 49 · 16− 16 = 784− 16 = 768.

You may verify that it also gives correct p3 through p7 found above, as well as the correct
p2024 from Solution 1.
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7. In the figure both the hexagon and pentagon are regular; each has sides which are equal.

(a) Show that cos(1
5
π) = 1

4
(
√
5 + 1) and cos(2

5
π) = 1

4
(
√
5− 1).

(b) Using the results from (a), find the ratio of the area of the large hexagon (with side
length b) and the area of the small pentagon (with side length a).

a

b

Preface. The angles encountered in this problem are 1
10
π = 18◦, 1

5
π = 36◦, 3

10
π = 54◦,

2
5
π = 72◦, 3

5
π = 108◦, and 4

5
π = 144◦. We choose to work exclusively with radians. Notice

that 0 < 1
10
π < 1

5
π < 3

10
π < 2

5
π < 1

2
π. Therefore, the angles 1

10
π, 1

5
π, 3

10
π, and 2

5
π all

correspond to the first quadrant; the sine or cosine of any of these angles is strictly positive.

First solution to (a). Let x = cos(1
5
π) and y = cos(2

5
π). Notice that 4

5
π = π − 1

5
π, or

4
5
π− 1

2
π = 1

2
π− 1

5
π. Since cosine is an odd function relative to 1

2
π, we see that cos(4

5
π) = −x .

Figure 6 demonstrates this identity graphically. Another way to get this result relies on the

0 π/5 π/2 4π/5 π
-1

-0.5

0

0.5

1

θ

cos θ

Figure 6. Function cos θ near θ = π/2.

addition-of-angle formula cos(α + β) = cosα cos β − sinα sin β to write

cos(π − 1
5
π) = cos π cos 1

5
π,

again giving the boxed result.

Now use the double-angle formula cos2 θ = 1
2
(1 + cos 2θ) to write

(5) x2 = 1
2
(1 + cos(2

5
π)) = 1

2
(1 + y), y2 = 1

2
(1 + cos(4

5
π)) = 1

2
(1− x).
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Subtraction of the second formula from the first gives

(x+ y)(x− y) = 1
2
(x+ y).

Since both x > 0 and y > 0, we have x + y > 0, and the last equation implies x − y = 1
2
,

that is y = x− 1
2
. Substitution of this result into the first equation from (5) gives

x2 = 1
2
(1 + y) = 1

2
(1
2
+ x).

Rearrangement then yields the quadratic equation

4x2 − 2x− 1 = 0.

The roots of this equation are 1
4
± 1

4

√
5, and x = 1

4
(
√
5 + 1) necessarily, since x > 0. Then

y = x− 1
2
= 1

4
(
√
5− 1).

π

5

10

π

2π

5

3π

10

C

X

A

B

Figure 7. 3
10
π–2

5
π– 3

10
π isosceles triangle.

Second solution to (a), due to Akilan Sankaran, 12th grade, Albuquerque Academy.
Consider the 3

10
π–2

5
π– 3

10
π isosceles triangle shown in Fig. 7, assuming that the length |BC|

of the segment BC is 1. Then from the figure |BX| = cos(1
5
π) and |CX| = sin(1

5
π). Also

from the figure, |BX| = |AB| cos( 1
10
π), showing that

|AB| = |BX|
cos( 1

10
π)

=
cos(1

5
π)

cos( 1
10
π)

.

It then follows that
|AX| = |AB| sin( 1

10
π) = cos(1

5
π) tan( 1

10
π).

Since ∆BAC is isosceles, |AB| = |AC|, implying that |AB| = |AX| + |CX|. With the
trigonometric expressions found above, we write this identity as

cos(1
5
π)

cos( 1
10
π)

= cos(1
5
π) tan( 1

10
π) + sin(1

5
π),

or, with the definition of tangent,

cos(1
5
π)
[ sin( 1

10
π)

cos( 1
10
π)

− 1

cos( 1
10
π)

]
+ sin(1

5
π) = 0.
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The value of sine or cosine on any of the angles here lies strictly between 0 and 1; see the

preface. Let x = cos(1
5
π), so that cos( 1

10
π) =

√
1
2
(x+ 1) and sin( 1

10
π) =

√
1
2
(1− x). With

these expressions, the last equation becomes

x
[√1− x

1 + x
−
√

2

1 + x

]
+
√
1− x2 = 0,

and, upon rearrangement,

√
1− x2

(1 + 2x

1 + x

)
= x

√
2

1 + x
.

Overall multiplication by
√
x+ 1 yields

√
1− x(2x+ 1) = x

√
2.

We then find √
1− x

2
=

x

2x+ 1
.

Upon squaring this equation and subsequent simplification, we reach

(x+ 1)(4x2 − 2x− 1) = 0.

The roots here are −1, 1
4
(1−

√
5), and 1

4
(1 +

√
5). Since 0 < x < 1, we conclude that

x = 1
4
(1 +

√
5).

Finally, as in the first solution to part (a), we use a double-angle formula to compute

cos(2
5
π) = 2x2 − 1 = 1

4
(
√
5− 1).

-1.5 -1 -0.5 0 0.5 1 1.5
-1

-0.5

0

0.5

1

x=real(z)

y
=

im
a
g
(z

)

   e
iπ/5

             
   e

-iπ/5
           

   e
i3π/5

           
   e

-i3π/5
         

   -1                      

Figure 8. Roots of z5 + 1 = 0 on the unit circle. The roots define a pentagon!

Third solution to (a), due toHiro Jau, 11th grade, La Cueva High School. This approach
uses complex numbers. Consider the equation z5+1 = 0, for which the first-quadrant number
z = eiπ/5 is an obvious solution. None of the other solutions (namely −1, e−iπ/5, e−i3π/5, and
ei3π/5) lie in the first quadrant. Each of these solutions is a unit-modulus complex number,
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and all are shown in Fig. 8.

Claim: The quintic polynomial z5 + 1 can be factored as

z5 + 1 =

root −1︷ ︸︸ ︷
(z + 1)

roots in quadrants 1,2︷ ︸︸ ︷(
z2 − 1 +

√
5

2
z + 1

) roots in quadrants 3,4︷ ︸︸ ︷(
z2 − 1−

√
5

2
z + 1

)
.

Proof. We begin with

z5 + 1 = (z + 1)(z4 − z3 + z2 − z + 1),

and then observe that

1

z2
(z4 − z3 + z2 − z + 1) = z2 − z + 1− 1

z
+

1

z2
=

(
z +

1

z

)2

−
(
z +

1

z

)
− 1.

The roots of u2 − u− 1 are u± = 1
2
(1±

√
5), and it then follows that

z4 − z3 + z2 − z + 1 =
(
z2 − 1 +

√
5

2
z + 1

)(
z2 − 1−

√
5

2
z + 1

)
.

This identity may also be confirmed by expansion of the right-hand side. Finally, let us
confirm the overbrace statements about the location of the roots. That z + 1 has z = −1 as
its root is clear. For the middle factor z2− 1

2
(1+

√
5)z+1, the quadratic formula gives roots

1 +
√
5

4
± 1

2

√(1 +√
5

2

)2

− 4 =
1 +

√
5

4
± i

4

√
10− 2

√
5.

Since they have strictly positive real part, these roots lie in the first and fourth quadrant
respectively; in fact, these are eiπ/5 and e−iπ/5. Similar calculation shows that the roots of
the final factor lie in the second and third quadrants; these are e3iπ/5 and e−3iπ/5. □

With the claim, we conclude that

eiπ/5 =
1 +

√
5

4
+

i

4

√
10− 2

√
5.

Finally, with the Euler formula eiπ/5 = cos(1
5
π)+i sin(1

5
π), we find, upon taking the real part

of both sides, that

cos(1
5
π) = 1

4
(1 +

√
5).

As in the earlier solutions, with this result use of a double-angle formula yields the stated
expression for cos(2

5
π).

Fourth Solution to (a), due to Grace Hsieh, 10th grade, La Cueva High School. This
approach uses the Law of Cosines. On the isosceles triangle with sides b, a, b and opposite
angles 2

5
π, 1

5
π, 2

5
π, we have, by the Law of Cosines, that

a2 = 2b2 − 2b2 cos(1
5
π)

b2 = a2 + b2 − 2ab cos(2
5
π).

From the second equation we get a = 2b cos(2
5
π), which we can substitute into the first

equation, thereby finding

4b2 cos2(2
5
π) = 2b2

(
1− cos(1

5
π)
)
.
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Dividing by 2b2 > 0 and using the double-angle formula cos(2
6
π) = 2 cos2(1

5
π) − 1, we get

the following equation involving solely cos(1
5
π):

2
[
2 cos2(1

5
π)− 1

]2
= 1− cos(1

5
π).

With x = cos(1
5
π), the equation becomes 2(2x2 − 1)2 = 1 − x, and, after some algebra,

8x4 − 8x2 + x+ 1 = 0. Clearly, x = −1 is a solution of this equation (as 8− 8− 1 + 1 = 0),
and so is x = 1

2
(as 8

16
− 8

4
+ 1

2
+ 1 = 0). We conclude that

8x4 − 8x2 + x+ 1 = (x+ 1)(2x− 1)(4x2 − 2x− 1).

Grace factored the equation as 8x4 − 8x2 + x+1 = (8x3 − 8x2 +1)(x+1), and then verified
that x = 1

4
(1+

√
5) is a solution. We can use the quadratic formula to identify x = 1

4
(1±

√
5)

as two roots, along with x = −1, 1
2
. We aim to identify one of the roots as cos(1

5
π), which

is strictly positive. The negative roots are summarily discarded, and we are left to consider
x = 1

4
(1 +

√
5) and x = 1

2
. The identification “cos(1

5
π) = 1

2
” is not possible. Why? We

know that 0 < 1
5
π < 1

3
π < 1

2
π, and the cosine is a decreasing function on the interval (0, 1

2
π);

whence cos(1
5
π) > cos(1

3
π) = 1

2
. It must be that cos(1

5
π) = 1

4
(1 +

√
5). As before, with this

result use of a double-angle formula yields the stated expression for cos(2
5
π).

Solution to (b). The intersection between the hexagon and the pentagon is a 1
5
π− 3

5
π− 1

5
π

triangle with side lengths a− b− a. So 1
2
b = a cos(1

5
π), and from part (a)

b2 = 4a2 cos2(1
5
π) = 1

2
a2(

√
5 + 3).

The area of the pentagon is AP = αPa
2, and the area of the hexagon is AH = αHb

2, where,
respectively, αP and αH are the areas of a pentagon of unit side length and a hexagon of
unit side length. With the last equation, the ratio in question is the following.

AH

AP

=
αH

αP

b2

a2
=

αH

αP

√
5 + 3

2

To complete the solution, we need to work out both αH and αP . The factor αH is the area
of six equilateral triangles of unit side length. Thus, αH is the area of twelve right triangles
with base lengths 1

2

√
3, 1

2
and hypotenuse length 1. Each of these twelve triangles has area

1
8

√
3, and αH = 1

2
3
√
3 . The factor αP is more difficult to work out, so let us state the result.

Claim: αP = 1
4

√
5(5 + 2

√
5) .

Proof. We give three proofs of the claim, one here and two more at the end in an appendix.
The factor αP is area of 5 isosceles triangles with base length 1 and angles 54◦ − 72◦ − 54◦,
namely 3

10
π− 2

5
π− 3

10
π. Thus, αP is the area of 10 right triangles with angles 2

5
π− 1

2
π− 3

10
π,

with 1
2
the base length opposite the angle 2

5
π; see Fig. 9. If the other base length is h,

known as the apothem, then the hypotenuse has length h/ cos(1
2
π) = 4h/(

√
5 + 1). By the

Pythagorean Theorem

1

4
+ h2 =

16h2

6 + 2
√
5

⇐⇒ 1

4
= (5− 2

√
5)h2.
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h

1

2

3π

10

5

π

Figure 9. Area αP as the area of 10 right triangles

Therefore, the other base length (the apothem) is

h =
1

2
√

5− 2
√
5
=

√
5 + 2

√
5

2
√
5

=

√
5(5 + 2

√
5)

10
.

We then have

αP = 10 ·
(1
2
· 1
2
·

√
5(5 + 2

√
5)

10

)
.

This expression reduces to the boxed one stated in the claim. □

Putting together the three boxed expressions above, we have the following.

AH

AP

= 3(
√
5 + 3)

√
3

5(5 + 2
√
5)

= 3

√
3(
√
5 + 3)2

5(5 + 2
√
5)

= 3

√
3(14 + 6

√
5)

5(5 + 2
√
5)

= 3

√
3(14 + 6

√
5)(5− 2

√
5)

25
= 3

5

√
6(5 +

√
5)

The last expression is arguably the most simplified.

Appendix: Here we present two alternative computations of αP . First consider Fig. 10
which depicts the area αP as the area of three isosceles triangles. From the figure and part
(a), we see that p = 2 cos(1

5
π) = 1

2
(1+

√
5). The area of each of the outer two triangles with

side lengths 1− p− 1 is

A1p1 = 2
[
1
2
cos(1

5
π) sin(1

5
π)
]
= cos(1

5
π) sin(1

5
π) = 1

16
(1 +

√
5)

√
10− 2

√
5,

where we have used the formula for cos(1
5
π) and sin(1

5
π) =

√
1− cos2(1

5
π). Via a similar

calculation, the area of the middle triangle with side lengths p− 1− p is

Ap1p = 2
[
1
4
· p sin(2

5
π)
]
= cos(1

5
π) sin(2

5
π) = 1

16
(1 +

√
5)

√
10 + 2

√
5.
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With these results, we perform the following long, but straightforward, calculation which
yields result stated in the claim.

αP = 2A1p1 + Ap1p

= 1
16
(1 +

√
5)
[
2

√
10− 2

√
5 +

√
10 + 2

√
5
]

= 1
16
(1 +

√
5)
[
2 +

10 + 2
√
5√

80

]√
10− 2

√
5

= 1
64
(1 +

√
5)
(10 + 10

√
5√

5

)√
10− 2

√
5

= 1
32

√
5
(
1 +

√
5
)2√

10− 2
√
5

= 1
32

√
5

√
(56 + 24

√
5)(10− 2

√
5)

= 1
32

√
5

√
320 + 128

√
5

= 1
4

√
5

√
5 + 2

√
5

For the second alternative calculation, view αP = A1p1 +Atrapezoid as shown in Fig. 11. We

3
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1

1

p

5

π

5

π

5

π

π

5

π

5

5

π

Figure 10. Area αP as the area of three isosceles triangles.

have computed the area A1p1 above. The trapezoid has area Atrapezoid = 1
2
(p + 1)q, with p

as above and

q = sin(2
5
π) =

√
1− 1

16
(
√
5− 1)2 = 1

4

√
10 + 2

√
5.

We than have

Atrapezoid = 1
16
(3 +

√
5)

√
10 + 2

√
5,
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Figure 11. Area αP as the area of an isosceles triangle and area of trapezoid.

from which

αP = 1
16
(1 +

√
5)

√
10− 2

√
5 + 1

16
(3 +

√
5)

√
10 + 2

√
5

= 1
16
(1 +

√
5)
[
2

√
10− 2

√
5 +

√
10 + 2

√
5
]

− 1
16
(1 +

√
5)

√
10− 2

√
5 + 1

8

√
10 + 2

√
5.

As shown in the first alternative calculation, the first term in the last expression is the result
from the claim. Therefore, we have found that

αP = 1
4

√
5

√
5 + 2

√
5− 1

16

√
(6 + 2

√
5)(10− 2

√
5) + 1

16

√
40 + 8

√
5.

Now, (6 + 2
√
5)(10 − 2

√
5) = 40 + 8

√
2, and the last two factors cancel. We have again

established the claim.
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8. (a) If the expression
(((x− 2)2 − 2)2 − 2)2,

with three pairs of parentheses, is multiplied out, what is the coefficient of x2?

(b) If the expression

(· · · (((x− 2)2 − 2)2 − 2)2 − · · · − 2)2,

with 2025 pairs of parentheses, is multiplied out, what is the coefficient of x2?

Solution. For (a) a brute-force approach is possible. Denote the expression by p3. Expan-
sion gives

p3 = (((x− 2)2 − 2)2 − 2)2 = ((x− 2)2 − 2)4︸ ︷︷ ︸
term 1

−4((x− 2)2 − 2)2︸ ︷︷ ︸
term 2

+4

Using Pascal’s triangle

term 1 = (x− 2)8 + 4(x− 2)6(−2) + 6(x− 2)4(−2)2 + 4(x− 2)2(−2)3 + (−2)4

term 2 = −4
[
(x− 2)4 − 4(x− 2)2 + 4

]
Collecting the results, we find

p3 = (x− 2)8 − 8(x− 2)6 + 20(x− 2)4 − 16(x− 2)2 + 4.

Now, again using Pascal’s triangle the coefficient of x2 in (x− 2)k is
(

k
k−2

)
(−2)k−2 = 1

2
k(k−

2)(−2)k−2. So we have the table

(x− 2)8: coefficient of x2 is 1
2
8 · 7 · (−2)6 = 1792.

(x− 2)6: coefficient of x2 is 1
2
6 · 5 · (−2)4 = 240.

(x− 2)4: coefficient of x2 is 1
2
4 · 3 · (−2)2 = 24.

(x− 2)2: coefficient of x2 is 1
2
2 · 1 · (−2)0 = 1.

The coefficient in question is then

1792− 8 · 240 + 20 · 24− 16 = 336 .

For (b) several high-school students gave the inductive argument given here. Denote by
pk the expression with k parentheses. The expression found above for p3 shows that p3 is
a degree-8 polynomial in x, and so p4 will be degree-16 and pk will be degree-2k. We are
generating a sequence {p1, p2, p3, · · · } of polynomials whose degree grows exponentially! Say
the expression pk with k parentheses, k ≥ 1, has pk,2 as the coefficient of x2. We have shown
p3,2 = 336. Likewise, let pk,1 and pk,0 be the coefficients of x1 and x0 in pk. Furthermore,

pk+1 = (pk − 2)2 = p2k − 4pk + 4.(6)

Now for −4pk the coefficients of x2, x1, and x0 are, respectively, −4pk,2, −4pk,1, and −4pk,0.
Moreover, we know

p2k =
(
(terms in x3 or higher) + pk,2x

2 + pk,1x+ pk,0)
2

= (terms in x3 or higher) + (2pk,2pk,0 + p2k,1)x
2 + 2pk,1pk,0x+ p2k,0.

Therefore, (6) determines that

pk+1,0 = (pk,0 − 2)2, pk+1,1 = 2pk,1(pk,0 − 2), pk+1,2 = 2pk,2(pk,0 − 2) + p2k,1.
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Clearly pk,0 = 4 for all k, and then pk+1,1 = 4pk,1, where p1,1 = −4 is the coefficient of x
in (x − 2)2. So p2,1 = −16, p3,1 = −64, and in general pk,1 = −4k. The main recursion of
interest is then the following.

pk+1,2 = 4pk,2 + 42k

Recursively,

pk+1,2 = 4(4pk−1,2 + 42(k−1)) + 42k

= 42pk−1,2 + 42k−1 + 42k

= 43pk−2,2 + 42k−2 + 42k−1 + 42k,

or continuing

pk+1,2 = 4m+1pk−m,2 +
m∑
ℓ=0

42k−m+ℓ.

With the choice m = k − 1,

pk+1,2 = 4kp1,2 +
k−1∑
ℓ=0

4k+1+ℓ = 4k + 4k+1

k−1∑
ℓ=0

4ℓ = 4k[1 + 4
3
(4k − 1)

]
= 1

3
4k(4k+1 − 1),

where we have used the summation formula for a geometric series. Let us confirm this result.

Claim: With the start value p1,2 = 1, the boxed two-term recursion is uniquely solved by

pk,2 =
1
3
4k−1(4k − 1).

Proof. The boxed equation has the form of a linear, inhomogeneous, constant-coefficient,
first-order difference equation. Any sequence {pk,2}∞k=1 obeying the boxed equation is called
a solution of the difference equation. It is uniquely determined by the start value (or initial
condition) p1,2. For an applied discussion of such equations, see W. Gautschi, Numerical
Analysis, second edition (Birkhäuser, 2012). Here we are solving

pk+1,2 = 4pk,2 + 42k, p1,2 = 1.

The expression stated in the claim gives

p1,2 =
1
3
41−1(41 − 1) = 1

3
40 · 3 = 1,

and so clearly obeys the initial condition. Moreover, using the proposed solution to compute
the right-hand side of the recursion, we find

4pk,2 + 42k = 4
[
1
3
4k−1(4k − 1)

]
+ 42k = 1

3
4k(4k − 1) + 42k = 1

3

[
4k(4k − 1) + 3 · 4k4k

]
= 1

3
4k(4k − 1 + 3 · 4k) = 1

3
4k(4 · 4k − 1) = 1

3
4k(4k+1 − 1).

This is the same expression with k replaced by k + 1, establishing the inductive step. □

The above analysis shows that

p2025,2 =
1
3
42024(42025 − 1).

This is a super large number! Indeed, since log10 4 ≃ 0.6020599913279624, one can show
p2025,2 ≃ 1

3
102467603. This is larger than the largest machine number 2971(253 − 1) ≃ 1.7977×

10308 in Matlab which uses a 64-bit storage format for double precision. By way of compar-
ison, the Eddington number, the number of protons in the observable universe, is estimated
to be about 1080.
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Solution 1.
We first find the maximum number of coins from which we are able to find the
counterfeit coin with a single weighing. Clearly, if there are 2 coins, we are able to
find the heavier one with 1 weighing.

What about 3? There are two cases. Either the scale is balanced, which implies that
the coin not on the scale is the counterfeit one. Otherwise, the scale must not be
balanced, which means that the counterfeit coin is the one which the scale indicates
to be heavier. Thus, we are able to detect the counterfeit coin with a single weighing
when there are 3 total coins.

Is this possible for 4 coins as well? Suppose we put only one coin on each side
of the scale. In this case, there are two possibilities for the weighing. If the scale is
unbalanced, then the coin which the scale indicates to be heavier is the counterfeit one.
If the scale is balanced, we know that one of the two remaining coins is counterfeit.
However, we cannot tell which one is the counterfeit one without another weighing.

What if we put 2 coins on each side? One side will always be heavier, but there is still
no way to tell which of the two coins on the heavier side is the true counterfeit one.

Thus, if there less than or equal to 3 coins, we can find the counterfeit coin with a
single weighing.

(a) Note that we can split the 9 coins into 3 groups of 3 coins. Then, we can weigh two
of the groups of 3 coins. If they are equal, we know that the counterfeit coin is among
the unweighed 3 coins. It only takes 1 more weighing to identify the counterfeit coin.

If the scale is unbalanced, the counterfeit coin is one of the 3 coins on the heavier
side. Again, it only takes 1 more weighing to identify the counterfeit coin.

1
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Thus, it takes only 2 weighings to identify the counterfeit coin, as desired.

(b) The answer is 3 . Note that we can split the 27 coins into 3 groups of 9 coins.
Similarly as in the previous part, it takes only one weighing to identify which pile
of 9 coins includes the counterfeit coin. Then, we know that it takes 2 weighings to
identify the counterfeit coin amongst 9 coins, so the answer is 1 + 2 = 3.

We must show that this is indeed the minimum. It suffices to show that we cannot
find the counterfeit coin amongst 10 coins with less than 3 weighings. We can split
10 coins into 3 piles as 5-5-0, 4-4-2, 3-3-4, 2-2-6, or 1-1-8. If we take the first two piles
of coins in each of these cases, there is always the possibility that we must find the
counterfeit coin amongst at least 4 coins. However, we found above that this requires
more than 1 weighing. Thus, it is not possible to always find the counterfeit coin
with 2 weighings. Thus, 3 is indeed the minimum for 27 coins.

Solution 2. This is a stars and bars problem: it can be likened to arranging 𝑀 stars
and 𝑁 − 1 bars (or dividers). For example, putting all 3 quanta in the first oscillator
can be represented as ***|||, where the bars divide the stars into the oscillators, and
where the stars represent the quanta. There are a total of 6 spots, and we can choose

3 of them to be the bars. Thus, the answer is
(
6
3

)
= 20 .

Solution 3. Let 𝑥 =

√
3 + 2

√
2 −

√
3 − 2

√
2. Then, we have

𝑥2 = 3 + 2
√

2 + 3 − 2
√

2 − 2
√
(3 + 2

√
2)(3 − 2

√
2)

= 6 − 2
√

32 − (2
√

2)2

= 6 − 2
√

9 − 8

= 6 − 2
√

1
= 4.

Thus, we have 𝑥 = 2 or 𝑥 = −2. However, clearly
√

3 + 2
√

2 >
√

3 − 2
√

2 which implies
that 𝑥 > 0. Taking the positive solution for 𝑥 yields 𝑥 = 2 .

Solution 4. We solve a related general version of this problem. Suppose we have
isosceles trapezoid 𝐴𝐵𝐶𝐷 such that 𝐴𝐵 is parallel to 𝐶𝐷. Additionally, suppose that
the diagonals are perpendicular and that we have 𝐴𝐵 = 𝑎 and 𝐶𝐷 = 𝑏. We wish to
find the length of 𝐴𝐷 = 𝐵𝐶 = 𝑥. This setup looks like the following:

2
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𝐴 𝐵

𝐶𝐷

𝑋

𝑎

𝑏

𝑥

Note that this is a similar setup as the original, except that we are expressing 𝐴𝐷 in
terms of 𝐴𝐵 and 𝐶𝐷, instead of finding 𝐶𝐷 from 𝐴𝐷 and 𝐴𝐵. This will still allow
us to use the resulting expression for 𝑥 in terms of 𝑎 and 𝑏 to find 𝐶𝐷.

Because the trapezoid is isosceles, we have △𝐴𝐶𝐷 � △𝐵𝐷𝐶. This means that
∠𝐷𝐴𝐶 = ∠𝐶𝐵𝐷. Then, △𝐴𝑋𝐷 � △𝐵𝑋𝐶 since 𝐴𝐷 = 𝐵𝐶, ∠𝐷𝐴𝑋 = ∠𝐶𝐵𝑋, and
since ∠𝐴𝑋𝐷 = ∠𝐵𝑋𝐶. This implies that 𝐴𝑋 = 𝐵𝑋 and that 𝐷𝑋 = 𝐶𝑋.

In other words, both △𝐴𝑋𝐵 and △𝐶𝑋𝐷 are 45-45-90 triangles. This means that
𝐴𝑋 = 𝑎√

2
and 𝐷𝑋 = 𝑏√

2
. Then, by the Pythagorean Theorem,

𝑥2 = 𝐴𝑋2 + 𝐷𝑋2 =
𝑎2

2 + 𝑏2

2 =
𝑎2 + 𝑏2

2 .

Thus,

𝑥 =

√
𝑎2 + 𝑏2

2 .

In our problem, however, we are given 𝑥 = 5, 𝑎 = 1, and we wish to find 𝑏. Using the
property which we derived above, we have

5 =

√
12 + 𝑏2

2 =⇒ 𝑏 = 7 .

Solution 5.
(a) The terms 𝑎1, 𝑎2, and 𝑎3 form an arithmetic progression. This means that

𝑎2 − 𝑎1 = 𝑎3 − 𝑎2.

This is because the difference between consecutive terms is always constant, so the
difference between the first and second terms must equal the difference between the
third and second terms. Substituting values, we have

cos(𝑥) − tan(𝑥) = sec(𝑥) − cos(𝑥).

3
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Rearranging yields
2 cos(𝑥) = sec(𝑥) + tan(𝑥).

Now, we know that sec(𝑥) = 1
cos(𝑥) and tan(𝑥) = sin(𝑥)

cos(𝑥) , so we have

2 cos(𝑥) = 1
cos(𝑥) +

sin(𝑥)
cos(𝑥) =

1 + sin(𝑥)
cos(𝑥) .

Since we are given that the arithmetic progression consists of positive numbers, we
can multiply both sides of our equation by cos(𝑥) which yields

2 cos2(𝑥) = 1 + sin(𝑥).

Now, the Pythagorean Identity gives us sin2(𝑥) + cos2(𝑥) = 1. Isolating cos2(𝑥) yields
cos2(𝑥) = 1 − sin2(𝑥). Substituting into our equation, we have

2(1 − sin2(𝑥)) = 1 + sin(𝑥).

Expanding and rearranging yields

2 sin2(𝑥) + sin(𝑥) − 1 = 0.

This quadratic in sin2(𝑥) factors as (2 sin(𝑥) − 1)(sin(𝑥) + 1), which means that either
sin(𝑥) = 1

2 or that sin(𝑥) = −1. Since we are given that 𝑥 is in the first quadrant, we
must have sin(𝑥) = 1

2 . Thus, 𝑥 = 30◦ = 𝜋
6 .

(b) To find 𝑟, the common difference, it suffices to compute cos(𝑥) − tan(𝑥). We have

𝑟 = cos(30◦) − tan(30◦)

=

√
3

2 − 1√
3
=

√
3

2 −
√

3
3

=

√
3

6 .

(c) Suppose that cot(𝑥) is the 𝑛th term in the sequence. This means that cot(𝑥) =

𝑎 + (𝑛 − 1)𝑟 where 𝑎 is the first term and 𝑟 is the common difference. We know that
the first term is tan(𝑥), and we also know that 𝑟 =

√
3

6 . Thus, we have

cot(𝑥) = tan(𝑥) + (𝑛 − 1) ·
√

3
6 .

We also know that 𝑥 = 30◦, which means that cot(𝑥) =
√

3 and tan(𝑥) = 1√
3
. Then, we

4
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have
√

3 =
1√
3
+ (𝑛 − 1) ·

√
3

6 .

Then,
√

3 =

√
3

3 +
√

3
6 · 𝑛 −

√
3

6 .

Dividing by
√

3 yields

1 =
1
3 + 1

6 · 𝑛 − 1
6 .

This means that 𝑛 = 5, so cot(𝑥) occupies the fifth position in the sequence.

Solution 6. We complimentary count. First, there are a total of
(32

1
) (32

1
)

ways to choose
one black square and one white square.

Now, we count the number of invalid ways. That is, we count the number of ways to
choose a black and white square in the same row or column. Note that there are no
cases where we can select a white and black square in the same row and column.

There are 8 rows and 8 columns, which mean that we can choose any of 16 rows or
columns to select the squares. In each row or column, there are 4 black squares and
4 white squares. So, there are

(4
1
) (4

1
)

ways to choose a white and black square in each
row. Thus, there are a total of 16 ·

(4
1
) (4

1
)

ways to choose a black and white square such
that they lie on the same row or column.

Thus, the number of ways to select a black square and white square so that the chosen
squares do not lie in the same row or column is(

32
1

) (
32
1

)
− 16

(
4
1

) (
4
1

)
= 322 − 16 · 42 = 768 ways .

Solution 7.
(a) Let 𝑥 = cos

(𝜋
5
)

and let 𝑦 = cos
( 2𝜋

5
)
. By the double angle formula, we have

𝑦 = 2𝑥2 − 1 (1). In addition, note that −𝑥 = cos
( 4𝜋

5
)
. Thus, we can use the double

angle formula again to get −𝑥 = 2𝑦2 − 1 (2). If we subtract the two equations from
each other, we get

𝑥 + 𝑦 = 2𝑥2 − 2𝑦2,

which simplifies to
𝑥 + 𝑦 = 2(𝑥 − 𝑦)(𝑥 + 𝑦).

Clearly, 𝑥 and 𝑦 are both positive, so we can divide through by 𝑥 + 𝑦. We are then
left with 𝑥 − 𝑦 = 1

2 .

5
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Now, we substitute 𝑦 = 𝑥 − 1
2 back into equation (1). This yields

2𝑥2 − 𝑥 − 1
2 = 0.

By the quadratic formula and taking the positive solution, we have

cos
(𝜋

5

)
= 𝑥 =

1 +
√

5
4 .

Similarly, we can substitute 𝑥 = 1
2 + 𝑦 into equation (2) to get

2𝑦2 + 𝑦 − 1
2 = 0.

Taking the positive solution yields

cos
(
2𝜋
5

)
= 𝑦 =

√
5 − 1
4 ,

and we are done.

(b) Let 𝐴1 be the area of the hexagon and let 𝐴2 be the area of the pentagon.

The general area of a regular polygon with 𝑛 sides is

𝐴 =
𝑠2 · 𝑛

4 tan
(𝜋
𝑛

) .
This is because we can split our regular polygon into 𝑛 congruent triangles by con-
necting each vertex to the center of the polygon. Then, we can drop a perpendicular
to each side of the polygon from the center. The area of each of the 𝑛 congruent
triangles is then 𝑠

2 · 𝑠

2 tan(𝜋𝑛 )
. Multiplying this area by 𝑛 for each of the 𝑛 congruent

triangles yields the desired formula.

Thus, we have
𝐴1
𝐴2

=

6𝑏2

4 tan(𝜋/6)
5𝑎2

4 tan(𝜋/5)

=
6𝑏2 tan(𝜋/5)
5𝑎2 tan(𝜋/6) .

Now, consider the triangle portion that is formed by the hexagon and the pentagon:

6
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𝑎

𝑏

𝐴

𝐵𝐶

Because ∠𝐵𝐴𝐶 is one of the angles of the regular pentagon, it has measure 3𝜋/5.
Then, ∠𝐴𝐶𝐵 = ∠𝐴𝐵𝐶 = 𝜋/5. Thus, we have

cos
(𝜋

5

)
=

𝑏/2
𝑎

.

This means that
𝑏2

𝑎2 = 4 cos2
(𝜋

5

)
.

So,

𝐴1
𝐴2

=
6𝑏2 tan(𝜋/5)
5𝑎2 tan(𝜋/6) =

24 cos2(𝜋/5) tan(𝜋/5)
5 tan(𝜋/6)

=
24 cos(𝜋/5) sin(𝜋/5)

5 tan(𝜋/6) .

Since tan(𝜋/6) = 1√
3
, we have

𝐴1
𝐴2

=
24
√

3 cos(𝜋/5) sin(𝜋/5)
5 .

Note that sin(2𝜋/5) = 2 cos(𝜋/5) sin(𝜋/5), so

𝐴1
𝐴2

=
12

√
3 sin(2𝜋/5)

5 .

From part (a), we found that cos
( 2𝜋

5
)
=

√
5−1
4 . Since sin2(𝜃) + cos2(𝜃) = 1, we have

sin
(
2𝜋
5

)
=

√
5 +

√
5

8 .

Thus
𝐴1
𝐴2

=
12

√
3

5 ·

√
5 +

√
5

8 =
3
5

√
6(5 +

√
5) .
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Solution 8. Let 𝑃𝑘 denote the entire expression when there are 𝑘 pairs of parentheses.
Let 𝑝𝑘,𝑖 denote the coefficient of 𝑥 𝑖 in 𝑃𝑘 .

Note that 𝑃1 = (𝑥 − 2)2 and 𝑃𝑘+1 = (𝑃𝑘 − 2)2 = 𝑃2
𝑘
− 4𝑃𝑘 + 4. Now, note that when we

expand this expression, the only terms we need to consider are those with degree 2
or less, since terms with degree greater than 2 will not contribute to the coefficient of
𝑥2. We have

𝑃𝑘+1 = ((unnecessary terms) + 𝑝𝑘,2𝑥
2 + 𝑝𝑘,1𝑥 + 𝑝𝑘,0)2

− 4((unnecessary terms) + 𝑝𝑘,2𝑥
2 + 𝑝𝑘,1𝑥 + 𝑝𝑘,0) + 4

= (unnecessary terms)2 + (more unnecessary terms)
+ 2𝑝𝑘,2𝑝𝑘,0𝑥2 + 𝑝2

𝑘,1𝑥
2 − 4𝑝𝑘,2𝑥2 + (unnecessary constant).

So,
𝑝𝑘+1,2 = 2𝑝𝑘,2𝑝𝑘,0 + 𝑝2

𝑘,1 − 4𝑝𝑘,2.

Now, note that 𝑝𝑘,0 = 4 for all 𝑘 since we always subtract 2 and square. Using a
similar expansion method as above, we can find that 𝑝𝑘+1,1 = 2𝑝𝑘,1𝑝𝑘,0−4𝑝𝑘,1 = 4𝑝𝑘,1.
Since 𝑝1,1 = −4, we have 𝑝𝑘,1 = −4𝑘 . Thus,

𝑝𝑘+1,2 = 8𝑝𝑘,2 + 42𝑘 − 4𝑝𝑘,2 = 4𝑝𝑘,2 + 42𝑘 .

Now, note that

𝑝𝑘+1,2 = 4𝑝𝑘,2 + 42𝑘 = 4(4𝑝𝑘−1,2 + 42𝑘−1) + 42𝑘

= 4(4(4𝑝𝑘−2,2 + 42𝑘−4) + 42𝑘−2) + 42𝑘

= 4𝑚+1𝑝𝑘−𝑚,2 +
2𝑘∑

𝑖=2𝑘−𝑚
4𝑖

Taking 𝑚 = 𝑘 − 1 yields

𝑝𝑘+1,2 = 4𝑘𝑝1,2 +
2𝑘∑

𝑖=𝑘+1
4𝑖 = 4𝑘 + 42𝑘+1 − 4𝑘+1

3 = 4𝑘

(
3 + 4𝑘+1 − 4

3

)
=

42𝑘+1 − 4𝑘

3 .

We can plug this closed formula into the recurrence to verify that it is correct, which
it turns out to be. Thus,

𝑝𝑘,2 =
42𝑘−1 − 4𝑘−1

3 =
16𝑘 − 4𝑘

12 .

From here, the answers for both parts can be easily calculated.
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