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1. ENTERED ANSWER: 2025

Solution 1. You can verify that 2024
2025

is the larger fraction by cross-multiplication and

comparison. Comparison of 2023
2024

and 2024
2025

is equivalent to comparison of 2023 ˆ 2025 and
2024 ˆ 2024 “ 20242. Direct calculation shows 2023 ˆ 2025 “ 4, 096, 575 ă 4, 096, 576 “
20242, with the conclusion 2023

2024
ă 2024

2025
.

Solution 2. The path in Solution 1 requires a calculator, or a willingness to perform two
burdensome multiplications by hand. Alternatively, notice that

2023 ˆ 2025 “ p2024 ´ 1q ˆ p2024 ` 1q “ 20242 ´ 1 ă 20242.

Rearrangement of 2023ˆ2025 ă 20242 gives 2023
2024

ă 2024
2025

. This calculation works for any three
consecutive whole numbers. For this problem n ´ 1 “ 2023, n “ 2024, and n ` 1 “ 2025,
but we may consider any positive integer n ě 1. If asked to compare n´1

n
and n

n`1
, we cross

multiply and compare pn ´ 1qpn ` 1q to n2. Notice that

pn ´ 1qpn ` 1q “ n2 ´ 1 ă n2,

and so n´1
n

ă n
n`1

.

Solution 3 (due to Bill Cordwell and Laszlo Zolyomi). Notice that n
n`1

“ 1 ´ 1
n`1

is

increasing and approaching 1 as n Ñ 8, so 2023
2024

ă 2024
2025

. One might also simply note that

2023

2024
“ 1 ´ 1

2024
ă 1 ´ 1

2025
“ 2024

2025
.

Remark. The third solution asserts that n{pn`1q is increasing (in fact, on integers n ě 0).
Similarly, the second solution has shown the equivalent result that pn´1q{n is increasing on
integers n ě 1. We can further establish the result for positive real numbers at least as large
as 1 by manipulation of inequalities. Start with positive real numbers, x1 and x2, obeying

1 ď x1 ă x2,
1
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which upon reciprocation gives
1

x2

ă 1

x1

ď 1,

and upon multiplication by ´1,

´1 ď ´ 1

x1

ă ´ 1

x2

.

Addition of 1 to each term in the chain yields

0 ď 1 ´ 1

x1

ă 1 ´ 1

x2

,

that is

0 ď x1 ´ 1

x1

ă x2 ´ 1

x2

.

With fpxq “ px´1q{x, the last inequality shows that 1 ď x1 ă x2 implies 0 ď fpx1q ă fpx2q.
We conclude that fpxq is an increasing function on the half-open interval r1,8q. With this
result established, we then have fpn ` 1q ą fpnq for any integer n P r1,8q.

2. ENTERED ANSWER: 9900

Preface. The problem asserts that there are 24 four-digit numbers, where the digits 2,4,5,7
appear exactly once. One can of course list all these numbers and count them, to verify
that the assertion is correct. However, a better way of counting is to consider four place
holders z{ z{ z{ z{ for the digits. In the first holder (say the leftmost) you can choose any of
the 4 numbers, in the second holder you can choose among the 3 numbers that have not
yet been chosen, in the third holder you can choose from among the 2 numbers left, and
in the fourth holder there is just 1 number left that should go there. Altogether, there are
4 ˆ 3 ˆ 2 ˆ 1 “ 4! “ 24 possibilities. The advantage in this way of thinking would be
evident were you asked, for example, “how many nine-digit numbers you can write with the
digits 1, 2, 3, 4, 5, 6, 7, 8, 9?” By a similar reasoning you would conclude that the answer is
9 ˆ 8 ˆ 7 ˆ 6 ˆ 5 ˆ 4 ˆ 3 ˆ 2 ˆ 1 “ 9! “ 362, 880. For this example you certainly don’t want
to write out all the possible nine-digit numbers and count them!

Solution 1. The largest such number is 7542 and the smallest is 2457. The first number
cannot begin with 4, 5, or 7, since 2 ˆ 4000 “ 8000, already larger than 7542. So our
number must begin with 2 and there are six possibilities: 2754, 2745, 2574, 2547, 2475,
2457. Moreover, the multiplier in question must be either 2 or 3, since 4 times any of these
numbers is greater than 7542. Indeed, notice that 4ˆ 2400 “ 9600 already. If the multiplier
were 2, then the first number would have to be either 2547 or 2457, since otherwise we would
generate an 8 or 0 as the last digit. However, 2ˆ2547 “ 5094 and 2ˆ2457 “ 4914. So these
won’t work. Our multiplier must then be 3. In this case 2754, 2745, 2574, 2547 are all too
big. Indeed, 3 ˆ 2547 “ 7641. So our first number must be either 2475 or 2457. We check
that 7425 “ 3 ˆ 2475. The reported answer is then 7425 ` 2475 “ 9900.

Solution 2 (due to Bill Cordwell). The largest such number is 7542 and the smallest is
2457. The leftmost digit of the pair’s larger number cannot be a multiple of more than 3,
else, since 4 ˆ 2000 “ 8000 ą 7542, the pair’s smaller number would be less than 2457. We
first look at multiples of 3. Because 3 ˆ 2457 is already larger than 7000, the pair’s larger
number must have 7 as its leftmost digit. So we look at 7542, which would correspond to
2514 as the smaller number (nope). 7524 does not work, nor does 7452, but 7425 “ 3ˆ2475.
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3. ENTERED ANSWER: 1

Preface. Even before trying to solve the problem, one might consider variations of the
game. What would happen if you had more piles? Or if the two piles had different numbers
of stones? Or if it’s the loser who is the last to draw stones? In such variations is there a
winning strategy for one of the players? As pointed out by Sean Choi, these are all examples
of the Game of Nim (see https://en.wikipedia.org/wiki/Nim).

Solution. The reported answer is 1, since Cora can always win if she plays wisely. To see
why, let’s explore how the game might unfold. We note that if, later in the game, a player
is confronted with two piles, each with a single stone, then their opponent will win on the
next turn. Indeed, when confronted with two single-stone piles, all a player can do is choose
one or the other stone, leaving behind one single-stone pile for their opponent to grab.

We argue that were the game played with two piles of 7 stones, then the person (player 2)
whose first turn comes second can always win, that is the person (player 1) who starts the
game will always lose if the second player plays wisely. Let’s explore why with examples.

Game Scenario 1

pile1 pile2

******* ******* begin with two full piles

******* player1 just took 7 stones from pile1

player2 just took 7 stones from pile2 and won

Game Scenario 2

pile1 pile2

******* ******* begin with two full piles

* ******* player1 just took 6 stones from pile1

* * player2 just took 6 stones from pile2

* player1 just took 1 stone from pile1

player2 just took 1 stone from pile2 and won

Game Scenario 3

pile1 pile2

******* ******* begin with two full piles

** ******* player1 just took 5 stones from pile1

** ** player2 just took 5 stones from pile2

* ** player1 just took 1 stone from pile1 (forced hand)

* * player2 just took 1 stone from pile2

* player1 just took 1 stone from pile1

player2 just took 1 stone from pile2 and won

Note that in Scenario 3, when player 1 is confronted with two piles, each with two stones,
they must choose only a single stone from one of the piles. If they were to grab a whole
pile (two stones) they would lose on the next turn. So their hand is forced. These scenarios
suggest that by always choosing the same number of stones as drawn previously by their
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opponent, but from the opposite pile, player 2 can always win the two-pile game. Let’s
formalize the argument.

We refer to a turn by player 1 followed by a turn by player 2 as a round of the game. Assume
that, at the start of a round, player 1 is confronted with two piles of p stones. Necessarily for
our game 1 ď p ď 7, but our argument works when 1 ď p ď N for any whole number N ą 1
(that is, for a game of two piles with N stones each). If p “ 1, then player 1 has before them
a losing proposition. The rules of the game demand that they choose a stone from one of
the piles, leaving behind a single-stone pile that player 2 will grab and win. Therefore, let us
assume that 2 ď p ď N . Player 1 cannot grab all the stones in one pile, or player 2 will win
on their next turn. To forestall losing immediately, player 1 must then take k stones from one
of the piles, with 1 ď k ď p ´ 1. Due to symmetry, it does not matter which of the p-stone
piles these k stones are taken from. Now at the start of their turn, player 2 is confronted
with two piles, one with p stones and one with p´ k stones, where 1 ď p´ k ď p´ 1. Player
2 then wisely takes k stones from the larger pile, and a new round begins. At the start of the
new round, player 1 is confronted with two piles of p ´ k P t1, . . . , p ´ 1u stones, that is the
new round starts with precisely the same scenario as the previous round, but with smaller
piles. Successive rounds as described in this paragraph will then inevitably lead to round in
which player 1 starts off confronted with two single-stone piles, the losing proposition.

Cora’s strategy is clear. She begins be taking all stones from one pile. This play effectively
turns the three-pile game into a two-pile game, and one in which the roles of player 1 and
player 2 are reversed. Cora is now in the winning player-2 role for the two-pile game.

4. ENTERED ANSWER: 3

Preface. Since the halcyon age of Greek mathematics circa 300 BC, people have known
that a regular hexagon can be circumscribed by a circle. Further, given the circumscribing
circle (known from its center and radius), the inscribed hexagon can be constructed using
a compass and a straight-edge. From this construction follows a fact that we assert: the
line segments joining the opposite vertices of a regular hexagon divide it into 6 equilateral
triangles, each one congruent to the others.

Solution 1. The area of the large hexagon is the area of 6 equilateral triangles of side
length b, that is Alarge “ 6 ¨

?
3b2{4 “ 3

?
3b2{2. Likewise, the area of the small hexagon is

Asmall “ 3
?
3a2{2, so

Alarge

Asmall

“
´ b

a

¯2

.

Note we may obtain this result simply by knowing that the area of an equilaterial triangle
is proportional to its squared side length, without knowing the constant of proportionality.
However, from the diagram 1

2
b “ a cospπ{6q, so b “ 2a cospπ{6q “ a

?
3. The ratio is therefore

Alarge

Asmall

“ 3.

Solution 2. The larger hexagon is subdivided into 6 equilateral triangles shown in the
figure. Five of these are colored cyan (light blue) and the sixth has itself been subdivided
into three, smaller and isosceles, triangles which are colored yellow, red, and green. Each
of these smaller triangles has base length b, with an opposite angle of 120˝ (the other two



5

angles are both 30˝). These small triangle are then congruent. Denote by α the area of one
of these smaller 30˝-30˝-120˝ triangles. Each of the equilateral triangles then has area 3α,
and the area of the larger hexagon is

Alarge “ 6p3αq “ 18α.

Now turn to the smaller hexagon. It is subdivided into four triangles. The first, the interior
triangle colored cyan, is an equilateral triangle congruent to one of the six which subdivided
the larger hexagon. The remaining three are smaller isosceles triangles of area α. Indeed
each is congruent to one of the smaller triangles depicted within the larger hexagon: the two
red triangles are congruent, the two green triangles are congruent, and the yellow triangle
is the overlap (intersection) of the larger hexagon and the smaller hexagon. Therefore, the
area of the smaller hexagon is

Asmall “ 3α
loomoon

yellow
red

green

` 3α
loomoon

cyan

“ 6α.

We then know the sought ratio Alarge{Asmall “ 3 of the areas. For our solution we need not
know α, but as 1

3
the area of an equilaterial triangle of side-length b, we may easily calculate

that α “ b2{p4
?
3q. From this result Alarge “ 3

2

?
3b2, and Asmall “ 1

2

?
3b2. Since in terms of

a and b respectively, the areas of Asmall and Alarge must have the same expressions, we see
that b “ a

?
3.

a

b

5. ENTERED ANSWER: 3

Solution. This is somewhat of a trick question, since we need to notice that

x “
c

1 `
b

1 `
?
1 “

b

1 `
?
2,

and should start with this recognition before embarking on the calculation. With this sim-
plification in hand,

x2 “ 1 `
?
2,

and

x4 “ p1 `
?
2q2 “ 1 ` 2

?
2 ` 2 “ 3 ` 2

?
2.

Whence x4 ´ 2
?
2 “ 3.
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6. ENTERED ANSWER: 4321

Solution. We are told that the friend with the blue hair is neither Mario nor Andrea and
is standing between Jess and the friend with the purple hair. We know then that neither
Mario nor Andrea have blue hair. We also know that Jess is standing next to the friend with
the blue hair and she cannot have purple or blue hair, hence she must have either pink or
green hair. Note that at this point all but Paul cannot have blue hair, so Paul must be
the one with the blue hair, and green, pink, purple are the colors left to assign. We are
also told that the friend with pink hair is standing between Mario and the friend with the
green hair. Therefore, Mario does not have pink or green hair; at this point, we then know
that Mario has purple hair, but let’s pretend that we have not made this observation.
If Jess has pink hair, then she is standing between Mario and the friend with the green hair,
but since she is standing next to the friend with blue hair, it must be that Mario has blue
hair, which is false. Therefore, Jess does not have pink hair. It must be that Jess has green
hair. At this point, we know that Mario and Andrea have not dyed their hair blue or green,
but we already know Mario’s hair is not pink, so Mario has purple hair, and Andrea does
not have purple hair. Andrea must have pink hair. The filled-out table follows.

name Mario Andrea Jess Paul

color purple pink green blue
color number 4 3 2 1

The reported answer is therefore 4321.

7. ENTERED ANSWER: 4

Solution. Let x denote the life span of the wild turkey, what we are asked for. Denote by
W , b, g, w, t, and e the life spans of the bowhead whale (W ), brown bear (b), western gorilla
(g), wolverine (w), tiger (t), and elephant (e). Finally, let S “ x ` W ` b ` g ` w ` t ` e

denote the sum of the life spans of all 7 animals. With this notation, let us now translate
the given information in equations. We are told:

W “ 8 ˆ b,

b “ g ´ 11,

g “ 3 ˆ w,

w “ x ` 8,

x “ t ´ 10,

t “ e

4
,

(1)

and finally that

(2) e “ S ´ 11

6
“ x ` W ` b ` g ` w ` t ` e ´ 11

6
.

Our job is to find x. This is a system of 7 linear equations in 7 variables, and, as it turns
out, this particular system has exactly one solution.
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Let us express the life span of each animal in terms of x, the life span of the wild turkey.
We first work upward starting with the fourth equation in (1),

w “ x ` 8

g “ 3w “ 3x ` 24

b “ g ´ 11 “ 3x ` 13

W “ 8b “ 24x ` 104.

Then from the fifth and sixth equation in (1),

t “ x ` 10

e “ 4t “ 4x ` 40.

Using these formulas, we may write the sum S solely in terms of x. Indeed,

S “ x ` p24x ` 104q ` p3x ` 13q ` p3x ` 24q ` px ` 8q ` px ` 10q ` p4x ` 40q
“ 37x ` 199.

We now substitute e “ 4x ` 40 and S “ 37x ` 199 into e “ 1
6
pS ´ 11q from (2), and then

solve for x. The substitution yields

4x ` 40 “ 1
6
p37x ` 199 ´ 11q

“ 1
6
p37x ` 188q.

Multiply both sides of the equation by 6 to reach 24x ` 240 “ 37x ` 188. Now subtract
24x and 188 from both sides of the equation to get 240 ´ 188 “ 37x ´ 24x, or equivalently
52 “ 13x, determining that x “ 4. The average span life of the wild turkey is 4 years! Once
you know x, you can find the average life span of all the other animals: w “ 12, g “ 36,
b “ 25, W “ 200, t “ 14, and e “ 56.

Hope you had a wonderful Thanksgiving and are getting ready for the upcoming Holidays!

Alternate solution. Here we employ the technique of Gaussian elimination to solve the
system of equations described above. The technique is most effectively wielded using the
notation of augmented matrices, but here we will work with the equations themselves. As
described above, our system is

W ´8b “ 0
b ´g “ ´11

g ´3w “ 0
w ´x “ 8

x ´t “ ´10
t ´1

4
e “ 0

W `b `g `w `x `t ´5e “ 11

(3)

To get the last equation in this list, we have rearranged the last equation

e “ 1
6
p´11 ` W ` b ` g ` w ` x ` t ` eq

stated in the problem. Gaussian elimination is a process whereby we put the system into an
upper triangular form suitable for solving. Label the equations in (3) and in the subsequent
systems written below as E1, E2, E3, E4, E5, E6, and E7. That is E1 is the first equation,
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and E7 is the last one. We now begin the elimination process. First, in the last system
replace E7 by [E7 minus E1].

W ´8b “ 0
b ´g “ ´11

g ´3w “ 0
w ´x “ 8

x ´t “ ´10
t ´1

4
e “ 0

9b `g `w `x `t ´5e “ 11

Next, in the last system replace E7 by [E7 minus 9ˆE2].

W ´8b “ 0
b ´g “ ´11

g ´3w “ 0
w ´x “ 8

x ´t “ ´10
t ´1

4
e “ 0

10g `w `x `t ´5e “ 110

Next, in the last system replace E7 by [E7 minus 10ˆE3].

W ´8b “ 0
b ´g “ ´11

g ´3w “ 0
w ´x “ 8

x ´t “ ´10
t ´1

4
e “ 0

31w `x `t ´5e “ 110

Next, in the last system replace E7 by [E7 minus 31ˆE4].

W ´8b “ 0
b ´g “ ´11

g ´3w “ 0
w ´x “ 8

x ´t “ ´10
t ´1

4
e “ 0

32x `t ´5e “ ´138

Next, in the last system replace E7 by [E7 minus 32ˆE5].

W ´8b “ 0
b ´g “ ´11

g ´3w “ 0
w ´x “ 8

x ´t “ ´10
t ´1

4
e “ 0

33t ´5e “ 182
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Next, in the last system replace E7 by [E7 minus 33ˆE6].

W ´8b “ 0
b ´g “ ´11

g ´3w “ 0
w ´x “ 8

x ´t “ ´10
t ´1

4
e “ 0

13
4
e “ 182

Now we are ready to solve using a process known as backward substitution. The last equation
tells us that e “ 1

13
728 “ 56, and then, working bottom-to-top, that t “ 1

4
e “ 14 and

x “ t ´ 10 “ 4. We could stop here since we have x, or continue to solve for the rest of
the variables. Proceeding, w “ x ` 8 “ 12, g “ 3w “ 36, b “ g ´ 11 “ 25, and, finally,
W “ 8b “ 200.

If you know linear algebra you could have represented the system with a 7 ˆ 7 array of
numbers (a matrix) and a 7 ˆ 1 array (a vector inhomogeneity), and used matrix algebra
techniques to find the solution. Elimination is one strategy, but there are others, for example,
QR-factorization. In this case these elaborate strategies are not necessary, but if you have
more complicated linear relations between the variables, and many more variables, then this
is the way to go. You may also enlist the help of a computer. In real life you may need to
solve a linear systems with hundreds, thousands, millions, or even billions of variables.

8. ENTERED ANSWER: 22

Solution 1 (due to Bill Cordwell). For convenience we take n “ k`6, where k P r´6,8q.
Then n2´11n`25 “ k2`k´5 “ fpkq. Note that if k ą 5, then pk`1q2 ą k2`k´5 ą k2, in
which case fpkq would not be a perfect square. At this point, the possibilities are few enough
that we can just try them. Note that k “ ´6 and k “ 5 give the values fpkq “ 25, which
is a perfect square. Moreover, fp´3q “ fp2q “ 1, which are perfect squares also. These are
the only choices of k P t´6,´5,´4,´3,´2,´1, 0, 1, 2, 3, 4, 5u that work. Conversion back to
n gives n “ 0, 3, 8, and 11. The sum is 22.

Solution 2 (expanded account of the argument made by Sean Choi). We seek
integers n ě 0 such that m2 “ n2 ´ 11n ` 25 is a perfect square, and first rule out values of
n which will not work. Notice that n ą 11 implies n` 25 ą 36. Therefore, assuming n ą 11,
we have

pn ´ 6q2 “ n2 ´ 12n ` 36 ă n2 ´ 12n ` pn ` 25q “ n2 ´ 11n ` 25.

Moreover, for any n ą 0,

n2 ´ 11n ` 25 “ n2 ´ 10n ` 25 ´ n ă n2 ´ 10n ` 25 “ pn ´ 5q2.
Therefore, subject to n ą 11, combination of these two inequalities gives

pn ´ 6q2 ă n2 ´ 11n ` 25 ă pn ´ 5q2,
showing that n2 ´ 11n ` 25 lies between consecutive perfect squares and, therefore, cannot
itself be a perfect square. We may therefore confine our search for n which yield n2´11n`25
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as a perfect square to 0 ď n ď 11, since the problem asks for non-negative n. However, for
completeness, we may also check for n ă 0 that

pn ´ 5q2 “ n2 ´ 11n ` 25 ` n ă n2 ´ 11n ` 25 ă n2 ´ 11n ` 36 ´ n “ pn ´ 6q2,

and again n2 ´11n`25 could not be a perfect square. As before, we are left with 0 ď n ď 11
for our remaining search. We might now simply test all 12 integers between and inclusive
of 0 and 11, in which case our solution here would be the same strategy as in Solution
1 (only without the simplifying transformation n “ k ` 6 used to more easily reveal the
relevant inequalities). Instead of following this path, we instead exploit congruency to rule
out further values of n.

If an integer m ě 0 is even, then it is divisible by 2, implying that m2 is divisible by 4.
Therefore,1 m2 ” 0 pmod 4q for even m ě 0. If an integer m ě 1 is odd, then m´ 1 is even,
and so divisible by 2. In the identity m2 “ pm ´ 1q2 ` 2pm ´ 1q ` 1 the first two terms on
the right-hand side are then divisible by 4. Therefore, m2 ” 1 (mod 4) for odd m ě 1. We
conclude that “congruency to either 0 or 1 modulo 4” is a necessary condition for an integer
to be a perfect square. However, such congruency is not a sufficient condition for an integer
to be a perfect square. Indeed, 32 ” 0 pmod 4q and 29 ” 1 pmod 4q, but neither 32 nor 29
is a perfect square.

These observations show that for n2 ´ 11n ` 25 to be a perfect square, we must have

n2 ´ 11n ` 25 ” 0 pmod 4q or n2 ´ 11n ` 25 ” 1 pmod 4q.

We might analyze these expressions directly, but a simpler path is to exploit the transitive
property mentioned in the footnote. Since n2 ´ 11n ` 25 “ n2 ` n ` 1 ` 4p6 ´ 3nq, we see
that n2 ´ 11n ` 25 ” n2 ` n ` 1 pmod 4q. By transitivity then, for n2 ´ 11n ` 25 to be a
perfect square, we must have

n2 ` n ` 1 ” 0 pmod 4q or n2 ` n ` 1 ” 1 pmod 4q.

We now check for n “ 0, 1, 2, 3 that n2 ` n ` 1 ” 1, 3, 3, 1 pmod 4q. Because n “ 1, 2
cannot work, and because n2 ` n ` 1 ” pn ` 4q2 ` pn ` 4q ` 1 pmod 4q, we then know that
n “ 1, 2, 5, 6, 9, 10 cannot work. Likewise, because n2 ` n ` 1 ” 1 pmod 4q for n “ 0, 3,
we also know n2 ` n ` 1 ” 1 pmod 4q for n “ 0, 3, 4, 7, 8, 11; therefore, for these integers

1Given an integer n ě 1 (the modulus) and two integers a and r, the notation a ” r pmod nq, read as
“a is congruent with r modulo n”, means that a ´ r is divisible by n; in other words, a ´ r “ pn for some
integer p. If 0 ď r ă n, then r is the remainder when dividing a by n. For example, 37 ” 1 pmod 4q, because
37 ´ 1 “ 36 “ 9 ˆ 4; moreover, 1 is the remainder when dividing 37 by 4, because 0 ď 1 ă 4. However,
while 37 ” 9 pmod 4q, because 37 ´ 9 “ 28 “ 7 ˆ 4, now 9 is not the remainder when dividing 37 by 4,
because 9 ě 4. Congruence modulo n is transitive: if a ” b pmod nq (so a ´ b “ pn for some integer p)
and b ” c pmod nq (so b ´ c “ ℓn for some integer ℓ), then a ” c pmod nq (indeed, from the assumptions
a ´ c “ a ´ b ` b ´ c “ pn ` ℓn “ pp ` ℓqn.
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n2 ´ 11n ` 25 is potentially a perfect square. So we now check n “ 0, 3, 4, 7, 8, 11, finding

02 ´ 11 ˆ 0 ` 25 “ 52

32 ´ 11 ˆ 3 ` 25 “ 12

42 ´ 11 ˆ 4 ` 25 “ ´3

72 ´ 11 ˆ 7 ` 25 “ ´3

82 ´ 11 ˆ 8 ` 25 “ 12

112 ´ 11 ˆ 11 ` 25 “ 52.

Evidently, n “ 4 and n “ 7 do not work, but n “ 0, 3, 8, 11 do give rise to perfect squares.
Their sum is 0 ` 3 ` 8 ` 11 “ 22.

Solution 3. Direct observation immediately yields that when n “ 0 then n2 ´ 11n ` 25 “
25 “ 52, so n “ 0 is a solution. Are there others? You may have a keen eye, and notice that
when n “ 11, then n2´11n`25 “ 112´112`25 “ 25 “ 52, so n “ 11 is another solution. Are
there more solutions? You could try small numbers, and discover that n “ 3 and n “ 8 yield
solutions as 32´11ˆ3`25 “ ´24`25 “ 1 “ 12 and 82´11ˆ8`25 “ 64´88`25 “ 1 “ 12.
These are the only solutions, so the sum in question is 0 ` 3 ` 8 ` 11 “ 22. But why are
these the only solutions? Could there be a very large integer n such that n2 ´ 11n ` 25 is a
perfect square, and we can’t simply guess it?

Let us introduce some notation. Consider y “ x2 ´ 11x ` 25, the equation of an upright
parabola that intersects the y-axis at y “ 25, and intersects the x-axis at two points x˘
that you could compute using the famous formula x˘ “ p´b ˘

?
b2 ´ 4acq{p2aq, where here

a “ 1, b “ ´11, and c “ 25. You can verify that px, yq “ px´, 0q and px, yq “ px`, 0q are not
integer solution pairs. We can complete the square by adding and subtracting p11

2
q2 “ 121

4
,

observing that

x2 ´ 11x ` 25 “
”

x2 ´ 2 ¨ 11
2
x `

`

11
2

˘2
ı

` 25 ´
`

11
2

˘2 “
`

x ´ 11
2

˘2 ´ 21
4
.

This tells us that the upright parabola is symmetric with respect to the line x “ 11
2
. By

symmetry, and since 11
2

is a half integer, once we have one integer solution we can always
find another integer solution (possibly negative) by reflecting across the line of symmetry.
For example, n “ 3 is a solution, and so by symmetry n “ 8 must be a solution, since the
middle point is precisely 3`8

2
“ 11

2
. Similarly, once you have found that n “ 0 is a solution,

then n “ 11 will be another solution, since 0`11
2

“ 11
2
.

What we want to solve is an equation of the form m2 “ n2 ´ 11n` 25, where n must be a
non-negative integer, and m an integer. Let us solve for n in terms of m using the quadratic
formula. We are then solving n2 ´ 11n ` p25 ´ m2q “ 0 for n, and the solutions are

n˘ “ 11 ˘
a

112 ´ 4p25 ´ m2q
2

“ 11 ˘
?
21 ` 4m2

2
.(4)

For either n´ or n` to be an integer, we need the discriminant 21 ` 4m2 to be a perfect
square. In other words, we are looking for integers pk,mq, such that k2 “ 21 ` 4m2 “
21 ` p2mq2. Reordering, we get k2 ´ p2mq2 “ 21. We can factor the left-hand side using
a2 ´ b2 “ pa ´ bqpa ` bq, so that

pk ´ 2mqpk ` 2mq “ 21.
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Since 21 “ 1 ˆ 21 “ 3 ˆ 7 are the only ways to factor 21, we will have to match the factors,
k ´ 2m and k ` 2m, on the left-side of the last equation, with either 21 and 1, or 1 and 21,
or 7 and 3, or 3 and 7. We can then analyze each case separately, and decide whether it
provides a solution to the original problem or not. Here are the cases.

(i) k ´ 2m “ 21 and k ` 2m “ 1. In this case, addition of both equations gives 2k “ 22;
therefore, k “ 11 and m “ ´5. Substituting m “ ´5 into (4), we find

n˘ “ 1
2
p11 ˘

?
112q “ 1

2
p11 ˘ 11q,

that is, n “ n´ “ 0 or n “ n` “ 11.

(ii) k ´ 2m “ 1 and k ` 2m “ 21. As before, addition of both equations gives 2k “ 22;
therefore, k “ 11 and this time m “ 5. Substituting m “ 5 into (4), we get the same
solutions as in (i), that is n “ 0 or n “ 11.

(iii) k ´ 2m “ 7 and k ` 2m “ 3. As before, adding both equations, we get 2k “ 10;
therefore k “ 5 and m “ ´1. Substitution of m “ ´1 into (4) then gives

n˘ “ 1
2
p11 ˘

?
21 ` 4q “ 1

2
p11 ˘ 5q,

that is, n “ n´ “ 3 or n “ n` “ 8.

(iv) k ´ 2m “ 3 and k ` 2m “ 7. As before, addition of both equations gives 2k “ 10;
therefore, k “ 5 and this time m “ 1. Substituting m “ 1 into (4), we get the same solutions
as in (iii), that is n “ 3 or n “ 8.

We have found all possible solutions, n “ 0, 3, 8, 11. Their sum is 22.

Solution 4. Consider the factored form of the function ppxq “ x2 ´ 11x ` 25, namely

ppxq “
“

x ´ p11
2

´
?
21
2

q
‰“

x ´ p11
2

`
?
21
2

q
‰

.(5)

The problem is to find non-negative integers n such that ppnq is a perfect square m2. To rule
out integers n which will not work, we first find the set of real numbers for which ppxq ă 0.
Toward this end, write

4ppxq “ p2x ´ 11 `
?
21q

looooooooomooooooooon

factor 1

p2x ´ 11 ´
?
21q

looooooooomooooooooon

factor 2

,(6)

from which arises the following sign table.

2x ă 11 ´
?
21 2x “ 11 ´

?
21 11 ´

?
21 ă 2x ă 11 `

?
21 2x “ 11 `

?
21 11 `

?
21 ă 2x

factor 1 a 0 ‘ ‘ ‘
factor 2 a a a 0 ‘

The table shows that m “ 0 does not correspond to a possible solution pair pn,mq, since
ppxq “ 0 is solved by x “ 1

2
p11 ˘

?
21q, that is non-integer values of x. Now consider the

inequality chain

11 ´
?
25

loooomoooon

6

ă 11 ´
?
21 ă 11 ´

?
9

looomooon

8

ă 11 `
?
9

looomooon

14

ă 11 `
?
21 ă 11 `

?
25

loooomoooon

16

.(7)

With this chain and the table, we see that 4ppxq, and so also ppxq, is negative for 2x “
t8, 10, 12, 14u; whence the integers n “ t4, 5, 6, 7u cannot work. Therefore, we may confine
our search to integers n for which 0 ď n ď 3 (in which case both square-bracket factors are
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strictly negative) and n ě 8 (in which case both square-bracket factors are strictly positive).
From (5) we see that

ppxq “
`

x ´ 11
2

˘2 ´ 21
4
,

showing that ppxq is an even function about x “ 11
2
. Therefore, we may confine our search

to n ě 8. Indeed, by symmetry

pp0q “ pp11
2

´ 11
2

q “ pp11
2

` 11
2

q “ pp11q
pp1q “ pp11

2
´ 9

2
q “ pp11

2
` 9

2
q “ pp10q

pp2q “ pp11
2

´ 7
2
q “ pp11

2
` 7

2
q “ pp9q

pp3q “ pp11
2

´ 5
2
q “ pp11

2
` 5

2
q “ pp8q.

Assume then that square-bracket factors in (6) are positive. Here are two ways to proceed.

‚ Similar to what was done in the first and second solutions, we might be clever enough to
notice that for n ą 11 we have

pn ´ 6q2 “ n2 ´ 11n ` p36 ´ nq ă n2 ´ 11n ` 25 ă n2 ´ 11n ` p25 ` nq “ pn ´ 5q2,
in which case we could rule out all n ą 11. Indeed, this observation shows that, for n ą 11,
the value ppnq lies strictly between consecutive perfect squares. Whence ppnq itself cannot
be a perfect square. Our search then reduces to just four integers: n “ 8, 9, 10, 11, a small
enough set to explicitly check. Moreover, with the congruency-modulo-4 argument from
Solution 2, we could also rule out n “ 9, 10; leaving only n “ 8, 11 for confirmation.

‚ Let us proceed without the observations made in the last bullet-point item. Then in (6)
since 0 ă factor 2 ă factor 1, it must hold that

pfactor 2q2 ă pfactor 2qpfactor 1q
looooooooooomooooooooooon

4ppxq

ă pfactor 1q2,

and upon taking square roots,2

2x ´ 11 ´
?
21 ă 2

a

ppxq ă 2x ´ 11 `
?
21.

Therefore, with the inequalities (7) we see that a solution pair pn,mq would have to obey

2n ´ 16 ă 2n ´ 11 ´
?
21 ă 2m ă 2n ´ 11 `

?
21 ă 2n ´ 6.

From the leftmost side of this chain, the assumption n ě 8 (as seen above) ensures that
both square-bracket factors are positive. The above chain gives n ´ 8 ă m ă n ´ 3, and the
only possibilities are then m P tn ´ 7, n ´ 6, n ´ 5, n ´ 4u. Substitution of m “ n ´ α into
m2 “ n2 ´ 11n ` 25 yields

´2αn ` α2 “ ´11n ` 25,

from which we find the formula

n “ α2 ´ 25

2α ´ 11
.

2The square root
?
x is an increasing function which preserves order relations among positive real numbers.
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This formula yields the n-values quoted above:

n “ 3 for α “ 4
n “ 0 for α “ 5
n “ 11 for α “ 6
n “ 8 for α “ 7.

Only solutions n “ 8, 11 follow from our analysis when both square-bracket factors are
positive. However, the symmetry arguments above show n “ 0, 3 (which a make both
square-bracket factors negative) are also permissible. The sum is 0 ` 3 ` 8 ` 11 “ 22.

9. ENTERED ANSWER: 8

Quick solution 1 (due to Bill Cordwell). We exploit our knowledge that the test format
requires an integer solution! Referring to the first figure, consider the right triangle ∆ABC.
We know |BC| “ 14, and evidently |CA| ă 4`4 “ 8. The hypotenuse is |AB| “ 2r, where r
is the radius of the circle. The Pythagorean Theorem then gives 4r2 “ 142`|CA|2 ă 142`82

or r2 ă 65. This inequality shows that the solution r is an integer less than 9. Since
|AB| “ 2r ą |BC| “ 14, we have r ą 7 necessarily. The only possible integer is r “ 8.

C

D

A B

B’

OE

Solution 2. Referring to the first figure, let θ “ =AOD. When rotated counter-clockwise by
angle θ about the center O, triangle ∆BCD becomes triangle ∆B1DA. Note that |B1D| “ 14,
and so |OE| “ 7. It follows that |AE| “ r ´ 7, where r is the radius of the circle. By the
Pythagorean Theorem applied to the right triangle ∆AED,

|DE|2 “ |AD|2 ´ |AE|2 “ 42 ´ pr ´ 7q2.
By the Pythagorean Theorem applied to the right triangle ∆DEO,

|DE|2 “ r2 ´ 72.

Equating these to expressions, we find 42 ´ pr ´ 7q2 “ r2 ´ 72 and so

2r2 ´ 14r ´ 16 “ p2r ´ 16qpr ` 1q “ 0.

Since the radius must be positive, r “ 8.
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C

B

D

A

C

D

A B

Solution 3 (expanded account of the argument made by Sean Choi). Referring to
the first figure, let r be the radius of the circle, so that |AB| “ 2r. Both △ABC and △ABD

are inscribed in the circle, and each has the diameter of the circle as one leg. We then know
that both △ABC and △ABD are right triangles; more precisely, =BDA and =BCA are
right angles3. Invocation of the Pythagorean Theorem for △ABC gives

|AC|2 “ |AB|2 ´ |BC|2 “ p2rq2 ´ 142 “ 4pr2 ´ 49q,(8)

and likewise invocation of the Pythagorean Theorem for △ABD gives

|BD|2 “ |AB|2 ´ |AD|2 “ p2rq2 ´ 42 “ 4pr2 ´ 4q.(9)

Although it may not be readily apparent, lABCD is a quadrilateral, and a cyclic one since
it inscribes the circle. We may then appeal to Ptolemy’s Theorem:

The product of (the lengths of) the diagonals of a cyclic quadrilateral equals
the sum of the products of (the lengths of) its opposite sides.

One most likely pictures the theorem with the rectangle shown at the top of the second figure,
in which case |AC| ¨ |BD| “ |AD| ¨ |BC| ` |AB| ¨ |CD| (why?). Note that the diagonals of
this rectangle would be diameters of the circumscribing circle (not shown). However, the
result holds just as well for the kite-shaped quadrilateral shown at the bottom of the second
figure. This is the cyclic quadrilateral from the first figure. The diagonal lengths of the kite-
shaped figure have already been computed in (8) and (9). Therefore, invocation of Ptolemy’s
Theorem yields the following statement.

|AC|¨|BD|
hkkkkkkkkkkkkikkkkkkkkkkkkj

a

16pr2 ´ 49qpr2 ´ 4q “
|AD|¨|BC|
hkkikkj

4 ¨ 14 `
|AB|¨|CD|
hkkikkj

8r

Simplification of this equation gives
a

pr2 ´ 49qpr2 ´ 4q “ 14 ` 2r,

3Consider the angle formed by 3 points on a circle, and the arc of the circle subtending this angle. Recall
that this angle is always half the center angle subtended by the same arc (why?). For example, in the first

figure, the angle =ACB is subtended by the arc
>

AB (running counterclockwise from A to B), and the center

angle subtended by the same arc
>

AB would be =AOB “ 180˝, therefore =ACB “ =AOB{2 “ 180˝{2 “ 90˝.
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and upon squaring both sides

pr2 ´ 49qpr2 ´ 4q “ 4pr ` 7q2.
Further algebra then gives

0 “ pr2 ´ 49qpr2 ´ 4q ´ 4pr ` 7q2

“ pr ` 7qrpr ´ 7qpr2 ´ 4q ´ 4pr ` 7qs
“ pr ` 7qpr3 ´ 7r2 ´ 8rq
“ rpr ` 7qpr ` 1qpr ´ 8q.

The only strictly positive solution is r “ 8.

10. ENTERED ANSWER: 10

Solution. We form

u2 “ 1
4
x2r´2pr ` r´1q2, v2 “ 1

4
y2r´2pr ´ r´1q2,

showing that
4u2

pr ` r´1q2 ` 4v2

pr ´ r´1q2 “ x2r´2 ` y2r´2 “ 1.

This is the equation of an ellipse in the pu, vq-plane with semi-major axis a “ 1
2
pr` r´1q and

semi-minor axis b “ 1
2
|r ´ r´1|. Here we demand that r ` r´1 “ 10

3
and |r ´ r´1| “ 8

3
. The

first equation is solved by r “ 1
3
and r “ 3. We then confirm for r “ 3 that r ´ r´1 “ 8

3
, and

for r “ 1
3
that r´ r´1 “ ´8

3
, so that the second equation |r´ r´1| “ 8

3
is also obeyed in both

cases. Therefore, r “ 3 and r “ 1
3
are possible radii. The reported answer is 3p3 ` 1

3
q “ 10.

Afterward. If you know something about complex numbers, you might think to form

u ` iv “ 1
2
xp1 ` r´2q ` 1

2
iyp1 ´ r´2q

“ 1
2
px ` iyq ` 1

2
px ´ iyqr´2.

Then with w “ u ` iv and z “ x ` iy, we have, upon using z̄ “ x ´ iy and r2 “ zz̄, that

w “ 1
2

`

z ` 1{z
˘

.

This is Joukowski’s transformation which in the early 20th century served as a theoretical
model of a wing profile (an airplane wing cross-section). It was superseded by more refined
models (some also involving complex analysis), and eventually computational (i.e. computer)
models. In the figure the circle of radius r “ 9

10
centered at the origin (top-left panel) is

mapped to a thin ellipse with semimajor axis a “ 181
180

and semiminor axis b “ 19
180

(top-right

panel). When the circle is shifted off center by 1
10

p´1` iq (bottom-left panel) the map yields
the closed curved which looks like the cross-section of a wing (bottom-right panel).
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Solution 1. Note that 2023
2024 = 1 − 1

2024 and that 2024
2025 = 1 − 1

2025 . Since 1
2024 >

1
2025 , we

have
2023

2024
= 1 − 1

2024
< 1 − 1

2025
=

2024

2025
.

Thus, our answer is 2025 .

Solution 2. By inspection note that 2 is the only valid units digit of the smaller
number. The digits 4, 5, 7 will not work since the leftmost digit of the multiple will
not be one of 2, 4, 5, or 7 or the multiple will be a 5 digit number.

Now, since the largest possible number is 7542 and the smallest possible number is
2457, we only need to consider multiplication by 2 or 3. Otherwise the multiple will
clearly exceed 7542.

Next, we consider the last digit. If we are multiplying by 2, the last digit can go from
5 to 0, 7 to 4, or from 4 to 8. From these possibilities, only going to 7 to 4 satisfies the
conditions given in the problem. However, it is easy to check that neither 2457 nor
2547 work.

When we multiply by 3, the units digit can go from 5 to 5, 7 to 1, or from 4 to 2. The
only cases that work are when the units digit goes from 5 to 5 and from 4 to 2. Then,
we can check the possibilities:

2475, 2745, 2574, 2754.

From these, note that 2475 · 3 = 7425, which is what we are looking for. Thus, our

answer is 2475 + 7425 = 9900 .

Solution 3. The optimal strategy for Cora is to force the game from a 3-pile game to
a 2-pile game. This means that Cora should take all the stones from the first pile.

1
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Then, if Ernie is playing optimally as well, Ernie must take some 𝑛 stones (𝑛 < 7)
from one of the two piles remaining. Otherwise (i.e., if 𝑛 = 7), the game will become
a one-pile game from which Cora will be able to win by taking all the stones.

Then, Cora can take 𝑛 but from the other pile, effectively "mirroring" Ernie’s moves.
If Cora plays in this manner, Cora will be able to reduce the game to a situation where
the second player has two single-stone piles left. This means that they must take one
stone from a pile, leaving Cora to win the game by taking the last stone.

So, Cora will always be able to win when playing optimally. Thus, the answer is 1 .

Solution 4. A visual solution. First, we decompose the hexagons as follows:

𝑏

𝑎

In order to clearly see what is going on, we will add a bit of color:

𝑏

𝑎

Rearranging the areas, we have:

2
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𝑏

Thus, the ratio of the areas is 6
2 = 3 .

Solution 5. Note that 𝑥 =

√
1 +

√
1 +

√
1 =

√
1 +

√
2. Now,

𝑥4 − 2
√

2 = (𝑥2)2 − 2
√

2 = (1 +
√

2)2 − 2
√

2

= (1 + 2
√

2 + 2) − 2
√

2

= 3 .

Solution 6. Given the first condition, we can let the person with purple hair, the
person with blue hair, and Jess be 3 people in order on the circle:

Jess

Now, we consider who can have pink hair. If Jess has Pink hair, then Mario must
have blue hair, a contradiction. Thus, the person with pink hair must take the last
remaining spot in the circle:

3
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Jess

This means that Jess must have green hair and that Mario has purple hair. Since
Andrea cannot have blue hair, Paul must have blue hair and Andrea must have pink
hair:

JessMario

Paul

Andrea

Filling in the table according to the numbers corresponding to the hair colors given,

we find that the answer is 4321 .

4
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Solution 7. Let

𝑎 = lifespan of bowhead whale

𝑏 = lifespan of brown bear

𝑐 = lifespan of western gorilla

𝑑 = lifespan of wolverine

𝑒 = lifespan of wild turkey

𝑓 = lifespan of tiger

𝑔 = lifespan of elephant.

From the information given in the problem, we construct the system of equations





𝑎 = 8𝑏

𝑏 = 𝑐 − 11

𝑐 = 3𝑑

𝑑 = 𝑒 + 8

𝑒 = 𝑓 − 10

𝑓 =
1
4 𝑔

𝑔 =

𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝑔 − 11

6
.

Starting from the fourth equation, we can work upwards and write 𝑎, 𝑏, 𝑐, and 𝑑 in
terms of 𝑒. We can also write the 5th and 6th equations in terms of 𝑒, which is what
we wish to find. Doing so yields





𝑎 = 24𝑒 + 104

𝑏 = 3𝑒 + 13

𝑐 = 3𝑒 + 24

𝑑 = 𝑒 + 8

𝑓 = 𝑒 + 10

𝑔 = 4𝑒 + 40.

Then, we can substitute into

𝑔 =

𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝑔 − 11

6

5
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and simplify to get

4𝑒 + 40 =

1

6
(37𝑒 + 188).

This gives
24𝑒 + 240 = 37𝑒 + 188

which yields the solution 𝑒 = 4 for the lifespan of a wild turkey.

Solution 8. Since 𝑛 is nonnegative,

𝑛2 − 11𝑛 + 25 < 𝑛2 − 10𝑛 + 25 = (𝑛 − 5)2.

Now, note that the closest perfect square below (𝑛 − 5)2 is

(𝑛 − 6)2 = ((𝑛 − 5) − 1)2 = (𝑛 − 5)2 − 2(𝑛 − 5) + 1.

Then, if
(𝑛 − 6)2 < 𝑛2 − 11𝑛 + 25 < (𝑛 − 5)2

is satisfied, then 𝑛2−11𝑛+25 will always be between two consecutive perfect squares,
which means that it can never be a perfect square. Simplifying the inequality, we get

𝑛2 − 12𝑛 + 36 < 𝑛2 − 11𝑛 + 25 < 𝑛2 − 10𝑛 + 25

−12𝑛 + 36 < −11𝑛 + 25 < −10𝑛 + 25

So 𝑛 > 11 is when this is satisfied. Thus, it suffices to test 𝑛 ≤ 11.

Now, we take the expression modulo 4 in order to narrow down the cases we test.
We have

𝑛2 − 11𝑛 + 25 ≡ 𝑛2 + 𝑛 + 1 (mod 4).
Testing residues modulo 4, the only two residues that work are 𝑛 ≡ 0 (mod 4) and
𝑛 ≡ 3 (mod 4), which means that we only have to test 𝑛 = 0, 4, 8, 3, 7, 11. We find

that 𝑛 = 4, 𝑛 = 7 do not yield perfect squares so our answer is 0 + 8 + 3 + 11 = 22 .

Solution 9. Let the radius be 𝑟. Then 𝐴𝐵 = 2𝑟. Since 𝐴𝐵 is the diameter of the circle,
△𝐴𝐵𝐷 and △𝐴𝐵𝐶 are right. Thus, applying the Pythagorean Theorem, we have that

𝐴𝐶 =

√
(2𝑟)2 − 142 and 𝐵𝐷 =

√
(2𝑟)2 − 42.

6
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𝐴 𝐵

𝐶

𝐷

Since 𝐴𝐵𝐶𝐷 is a cyclic quadrilateral, we can apply Ptolemy’s theorem, which states
that 𝐴𝐶 · 𝐵𝐷 = 𝐴𝐵 · 𝐶𝐷 + 𝐵𝐶 · 𝐴𝐷. So,

√
(2𝑟)2 − 142 ·

√
(2𝑟)2 − 42

= (2𝑟) · 4 + 14 · 4.

Simplifying, we have

√
(2𝑟)2 − 142 ·

√
(2𝑟)2 − 42

= 8𝑟 + 56,

√
𝑟2 − 49 ·

√
𝑟2 − 4 = 2𝑟 + 14.

Squaring both sides,
(𝑟2 − 49)(𝑟2 − 4) = (2𝑟 + 14)2,

(𝑟 + 7)(𝑟 − 7)(𝑟2 − 4) = 4(𝑟 + 7)2,
(𝑟 + 7)(𝑟3 − 7𝑟2 − 4𝑟 + 28) = (𝑟 + 7)(4𝑟 + 28),

(𝑟 + 7)(𝑟3 − 7𝑟2 − 8𝑟) = 0,

𝑟(𝑟 + 7)(𝑟2 − 7𝑟 − 8) = 0.

Factoring,
𝑟(𝑟 + 7)(𝑟 − 8)(𝑟 + 1) = 0.

We take the positive solution, so 𝑟 = 8 .

Solution 10. We have

𝑢2
= 𝑥2

(
1 + 𝑟−2

2

)2

and

𝑣2
= 𝑦2

(
1 − 𝑟−2

2

)2

.

7
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Then,

𝑥2
= 𝑢2

(
2

1 + 𝑟−2

)2

and

𝑦2
= 𝑣2

(
2

1 − 𝑟−2

)2

.

Then, we map the equation for the circle

𝑥2

𝑟2
+ 𝑦2

𝑟2
= 1

to

𝑢2
(

2
1+𝑟−2

)2

𝑟2
+

𝑣2
(

2
1−𝑟−2

)2

𝑟2
= 1.

Then, note that (
2

1+𝑟−2

)2
· 1

𝑟2
=

1

𝑎2

and (
2

1−𝑟−2

)2
· 1

𝑟2
=

1

𝑏2
.

Thus, since 𝑎 =

5

3
and 𝑏 =

4

3
, we have

����
2

𝑟 + 𝑟−1

���� =
3

5

and ����
2

𝑟 − 𝑟−1

���� =
3

4
.

Then,

𝑟 + 𝑟−1
=

10

3

and

|𝑟 − 𝑟−1 | = 8

3
.

From the first equation, we get 𝑟 =
1
3 and 𝑟 = 3. We can confirm that both these

values satisfy the second equation as well. Thus, the desired sum is
10

3
and so the

answer is 10 .
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