## Spring 2022 UNM-PNM Math Contest

1. Two people each have jobs. The first person works $40 \mathrm{hrs} /$ week at $x$ dollars per hour. The second person works $30 \mathrm{hrs} /$ week at $y$ dollars per hour. If they switch so that the first person works 30 $\mathrm{hrs} /$ week and the second person works $40 \mathrm{hrs} /$ week, they will increase their combined income by $\$ 100$ per week. How much per hour does the second person make?
2. Suppose a car going 65 mph is traveling North parallel to a train going 50 mph . Once the front of the car is as far north as the back of the train, it takes another three minutes for the front of the car to be further North than the front of the train. How long is the train?
3. In how many ways can the number 2022 be written as the sum of consecutive integers?
4. Suppose $p>0$. Find the smallest positive $\epsilon$ such that

$$
\frac{p}{1+p}+\frac{p}{(1+p)(1+2 p)}+\cdots+\frac{p}{(1+314158 p)(1+314159 p)}+\epsilon
$$

is a whole number.
5. Find all the solutions to the equation

$$
\sqrt[3]{25 x\left(2 x^{2}+9\right)}=4 x+\frac{3}{x}
$$

6. Consider words consisting of letters from the alphabet $\{a, c, g, t\}$. How many words of length 8 are there where the first and letters are both $a$, and no two consecutive letters are the same?
7. Circle $C_{1}$ has center $O_{1}$ and radius 1. Circle $C_{2}$ has center $O_{2}$ and radius $\sqrt{2}$. The circles intersect at points $A$ and $B$ (see diagram). Let $A C$ be the chord of $C_{2}$ that is bisected by $C_{1}$. Find the length of $A C$ given that $O_{1}$ and $O_{2}$ are 2 units apart.

8. How many whole numbers between 1 and 2022 (inclusive) are perfect squares?
9. Suppose $A, B, C$ are points in a plane and $\angle A C B=\theta$. Describe the set of all the points $X$ satisfying $|A X|^{2}+|A B|^{2}=|A C|^{2}$
10. In a long line of people waiting to buy the latest edition of the popular magazine Shiprock Mathematics Enthusiast, each person either has a $\$ 10$ bill or a $\$ 5$ bill. If there are $n$ people with $\$ 5$ bills and $m$ people with $\$ 10$ bills, what is the probability the cashier will never run out of change if the cost of the magazine is $\$ 5$ ?
