
UNM - PNM STATEWIDE MATHEMATICS CONTEST

October 31 - November 2, 2020 First Round Three Hours

1. Twenty lemons cost the same number of coins as the number of
lemons that you could buy for 500 coins. How much do 10 lemons
cost?

Answer: 50

Solution: Denote the cost (in coins) of one lemon by c. Then
20c = 500/c, from which c = 5. The cost of 10 lemons is therefore
10c = 50 coins.

2. The lengths (in centimeters) of of each of four triangles I, II, III and
IV are as follows:

I : 20, 21, 29 II : 3, 4, 5

III : 4, 7
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Which of these are right-triangles (that is, triangles having a right
angle)?

Answer: I,II and III.

Solution: The sum of squares of the lengths of two sides of these
triangles equals to the square of the length of the third side.

3. A jar contains 2020 balls. Each ball may have one or more colors on
it (for example, a ball could be completely colored red, another could
be colored red and blue, and another could be colored green, yellow
and orange). The only information we have is that the number of
balls with red on them (for example, a ball which is colored in both
blue and red) is a multiple of 7. Similarly, the number of balls with
blue on them is a multiple of 9, and the number of balls with yellow
on them is a multiple of 15. What is the maximum number of balls
colored both red and blue but not yellow?

Answer: 2016

Solution: The maximum number of balls having both red and
blue must be a multiple of lcm(7, 9) = 63. We have 32 · 63 = 2016.
The balls having yellow play no role in the maximum since that
number could be 0.
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4. 90 students attended the Public Lecture of the statewide UNM-
PNM math contest last year. Some of these students arrived early
and had snacks which were served before the lecture started. Donuts
were eaten by 32 students, cupcakes were eaten by 61 students, and
sandwiches were eaten by 29 students. 28 students had both a donut
and a cupcake, 16 students had both a cupcake and a sandwich, and
10 students had both a donut and a sandwich. Only 6 students ate
all three snacks. How many students did not eat any snack?

(Note: The online version had a typo and stated that sandwiches
were eaten by 19 students. We gave everyone full credit for this
problem.)

Answer: 16

Solution: Let D, S, and C be the set of students who ate donuts,
cupcakes, and sandwiches respectively. Then, |D| = 32, |C| =
61, |S| = 29, |D∩C| = 28, |D∩S| = 10, |C∩S| = 16, |D∩S∩C| = 6
(where |A| denotes the number of elements in the set A). Then,

|D ∪ S ∪ C| = |D|+ |C|+ |S| − |D ∩ C| − |D ∩ S| − |C ∩ S|+ |D ∩ S ∩ C|
= 32 + 61 + 29− 28− 10− 16 + 6 = 74.

Therefore, students who did not have any snack are 90− 74 = 16.

5. Suppose x1 = a and xn+1 = xn + b. For what values of a, b do we
have x0 + · · · xn = n2?

Answer: a = 1, b = 2.

Solution: We have

x0 + · · ·xn =
n(2a+ (n− 1)b)

2
=

(
a− b

2

)
n+

b

2
n2.

In order for this sum to equal n2 for all n, we must have that

a− b

2
= 0,

b

2
= 1,

from which b = 2 and a = 1.
A different solution by Bill Cordwell : Since x1 = 1 = 12, we must

have a = 1. The perfect squares are obtained by successively adding
the consecutive odd integers (note (n + 1)2 − n2 = 2n + 1), e.g., 1,
1 + 3 = 4, 4 + 5 = 9, 9 + 7 = 16, etc., so since each successive odd
number is 2 more than the previous (xn+1 = xn +2, b = 2. So, a = 1
and b = 2.
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6. What are the last two digits of 62020?

Answer: 76

Solution: We want 62020 mod100. Note that,

61 = 6

62 = 36

63 = 16 mod 100

64 = 96 mod 100

65 = 76 mod 100

66 = 56 mod 100

67 = 36 mod 100

For n ≥ 2, 6n = 65k+r mod 100, where r is the remainder mod 5.
Now 2020 = 0 mod 5, and hence 62020 = 76.

7. Four excellent mathematics school students are walking down the
street in downtown Gallup, NM, when they see an absolutely fla-
grant violation of the New Mexico Rules of the Road. As the car is
speeding away, the first student notes the license plate starts with
“TX” and is followed by four digits; the second student notes the
next two digits are identical to each other; the third student notes
the last two digits are identical to each other; and the final student
notes the four digits form a perfect square. What is the license plate
number?

Answer: TX7744

Solution: The four digits of the plate form the number

n2 = 1000a+ 100a+ 10b+ b = 11(100a+ b).

Because 11 divides the perfect square n2, it must be that 112 divides
it, too; and therefore 11 divides 100a + b. Either by the divisiblity
rule for 11 or by considering this sum modulo 11, we see that 11
divides a + b. Because a and b are single digit numbers, it must be
that a+ b = 11.

Because n2 is perfect square, its last digit—and therefore b—must
be one of 0, 1, 4, 5, 6, 9, to which the corresponding possible values
for a are 11, 10, 7, 6, 5, 2. Because a and b are single digit numbers,
the only possible license plate numbers are 7744, 6655, 5566 and
2299. Of these, only 7744 = 882 is a perfect square.
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8. A disc is divided into p sectors, where p is a prime. Each sector is
painted using one of n colors. How many ways are there to paint
the disc if n = 5 and p = 7? Count all configurations which are
rotations of each other as one case.

For reference, below is an example of a disc with 5 sectors and 3
colorings (dark gray, light gray, white).

Answer: 11165

Solution: There are np ways to color the disc, of which n are
solid coloring (i.e. each sector is colored the same). Because each
non-solid coloring can be rotated into p−1 other orientations, there
are

np − n
p

non-solid colorings, and

np − n
p

+ n

total colorings. Plugging in n = 5 and p = 7 into the above expres-
sion gives 11165. (Note the necessary calculation may be sped up
by writing 57 = 5354 = 125 · 625.)

9. A triangle has area S and perimeter P . Each of the lines forming the
sides of the triangle are moved outward a distance h in the direction
that’s perpendicular to the corresponding side of the triangle, as
in the figure below. What is the area S ′ of the new triangle when
S = 100, P = 50, and h = 1.6?

h
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Answer: 144

Solution: The new triangle is similar to the original triangle, and
has the proportionality constant κ = r+h

r
= 1 + h

r
, where r = 2S

P
is

the radius of the circle inscribed in the triangle. We therefore have

κ = 1 + hP
2S

, from which S ′ = κ2S =
(
1 + hP

2S

)2
S. Plugging in the

given values for S, P, h we get S ′ = 1.96S = 196.

h

r

A different solution by Bill Cordwell : By construction, each of the
expanded sides is parallel to its original side, so all of the angles of
the expanded triangle are the same as the original triangle. Thus,
the two triangles are similar.

Then each of the sides a, b, and c is magnified in length by a scale
factor λ. This means the area is magnified by a factor of λ2. If we
draw lines (in red, above) connecting the nearby vertices, we see that
the extra area added is the sum of three long, skinny trapezoids, with
the bottom one adding 1

2
(λa+ a) · h, for example. Adding all three

trapezoids gives an area A′ = A+ 1
2
(P ′+P ) ·h = A+ 1

2
(λP +P ) ·h =

λ2A.
Substituting for A and P gives, simplifying, 5λ2 − 2λ − 7 = 0,

and solving for λ gives the scale factor of 1.4. The new area is then
(1.4)2 · 100 = 196.

This approach would also work if the h values were different for
each side, but we would need to know the original lengths of the
sides in that case.

a

b c

λ∙a
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10. Given a positive integer n, we know that the number of non-negative
integer solutions to

x1 + x2 + · · · xk = n

is
(
n+k−1
k−1

)
, where

(
n
r

)
= n!

r!(n−r)! and n! = n×(n−1)×(n−2) · · · 2×1.

For example consider finding non-negative integer solutions to,

x+ y = 3.

Here n = 3, k = 2, and so we have
(
4
1

)
= 4 solutions (these are

x = 0, y = 3, x = 1, y = 2, x = 2, y = 1, and x = 3, y = 0).
Now we want to find the number of non-negative integer solutions

to

a+ b+ c+ d = 16

such that 2 ≤ a ≤ 5, 1 ≤ b ≤ 8, 0 ≤ c ≤ 6, 3 ≤ d ≤ 8. How
many such solutions are there?

Answer: 138

Solution: Substitute w = a−2, x = b−1, y = c, z = d−3. Then
we want the number of solutions to

w + x+ y + z = 10 (∗)

such that 0 ≤ w ≤ 3, 0 ≤ x ≤ 7, 0 ≤ y ≤ 6, 0 ≤ z ≤ 5. Let S denote
all the non-negative integer solutions to (∗), S1 denote the subset
such that w ≥ 4, S2 the subset such that x ≥ 8, S3 the subset such
that y ≥ 7 and S4 the subset such that z ≥ 6. From the statement
of the problem we know that the number of solutions in S is

(
13
3

)
.

The number of solutions in S1 are the same as the number of
non-negative integral solutions to

w + x+ y + z = 6

(obtained by subtracting 4 on both sides of (∗)). This number is(
9
3

)
. Similar, the number of solutions in S2, S3 and S4 are

(
5
3

)
,
(
6
3

)
and

(
7
3

)
respectively.

Now consider the number of solutions in S1 ∩ S2. These are non-
negative integral solutions to (∗) such that w ≥ 4, x ≥ 8. This
number is obviously 0. Now, number of solutions in S1 ∩ S3 satisfy
w ≥ 4, y ≥ 7. This number is also 0. For S1∩S4 we want w ≥ 4, z ≥
6. This is the same as the number of non-negative integer solutions
to

w + x+ y + z = 0
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This number is
(
3
3

)
= 1. Similarly, number of solutions in S2 ∩ S3,

S2 ∩ S4, S3 ∩ S4 are all zero. From this it also follows that number
of solutions in intersection of three or more of these sets is also 0.

Let |S| denote the number of elements of S. Then, our answer is

|S| − |S1 ∪ S2 ∪ S3 ∪ S4| = |S| − |S1| − |S3| − |S3| − |S4|+ |S1 ∩ S4|

=

(
13

3

)
−
(

9

3

)
−
(

5

3

)
−
(

6

3

)
−
(

7

3

)
+ 1 = 138

(The remaining terms are 0.)


