
UNM-PNM Statewide High School Mathematics Contest
Round-2, 10 February 2024, 14:00-17:30

1. Consider a sum of natural numbers such that each digit from 1 to 8 appears only once. For
example, the numbers 81, 27, 4536 feature each digit from 1 to 8 only once and sum to 81 + 27 +
4536 = 4644.

(a) Find such a sum which adds up to 243.

(b) Find the integer nearest 2024 which can be represented as such a sum.

Solution. (a) There are many possible solutions; here a few

213 + 4 + 5 + 6 + 7 + 8, 147 + 82 + 3 + 5 + 6, 81 + 62 + 53 + 47.

(b) As shown below, all such sums are divisible by 9; whence 2024 = 23 ·11·23 cannot be represented
as such a sum. However, 2025/9 = 225 which suggests such a representation is possible for 2025.
One such sum is 1587 + 432 + 6 = 2025.

Remarks. We might have found any of the sums reported in (a) via experimentation, but let
us think systematically. Clearly, there is no such sum of 8 summands, since 1 + 2 + 3 + 4 + 5 +
6 + 7 + 8 = 36. Likewise, there is no such sum of 7 summands, since the largest such sum is
1 + 2 + 3 + 4 + 5 + 6 + 87 = 108. What about a sum of 6 summands? There are several possibilities.

213 + 4 + 5 + 6 + 7 + 8 = 243

3 + 214 + 5 + 6 + 7 + 8 = 243

3 + 4 + 215 + 6 + 7 + 8 = 243

3 + 4 + 5 + 216 + 7 + 8 = 243

3 + 4 + 5 + 6 + 217 + 8 = 243

3 + 4 + 5 + 6 + 7 + 218 = 243.

For a sum of 5 summands, consider

182 + 43 + 5 + 6 + 7 = 243

187 + 42 + 3 + 5 + 6 = 243

186 + 47 + 2 + 3 + 5 = 243

185 + 46 + 7 + 2 + 3 = 243

183 + 45 + 6 + 7 + 2 = 243

142 + 83 + 5 + 6 + 7 = 243

147 + 82 + 3 + 5 + 6 = 243

146 + 87 + 2 + 3 + 5 = 243

145 + 86 + 7 + 2 + 3 = 243

143 + 85 + 6 + 7 + 2 = 243.

For a sum of 4 summands, here are some possibilities.

123 + 65 + 47 + 8 = 243

128 + 63 + 45 + 7 = 243

127 + 68 + 43 + 5 = 243

125 + 67 + 48 + 3 = 243,
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and

81 + 62 + 53 + 47 = 243

87 + 61 + 52 + 43 = 243

83 + 67 + 51 + 42 = 243

82 + 63 + 57 + 41 = 243.

There are no such sums involving 3 or fewer summands. Indeed, the smallest such 3-summand sum
is 136 + 247 + 58 = 441. Likewise, for 2 summands or a single summand the smallest such sums
are respectively 1357 + 2468 = 3825 and 12345678.

(b) To prove all sums arising as described are divisible by 9, consider the following argument. The
possible sums range in value between

36 = (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8) · 100,

a sum of eight numbers, and

87654321 = 1 · 100 + 2 · 101 + 3 · 102 + 4 · 103 + 5 · 104 + 6 · 105 + 7 · 106 + 8 · 107,

a sum of a single number. In general, we will have a sum of k summands, with 1 ≤ k ≤ 8. Denote
these summands as n1,n2,. . . ,nk, and consider

n1 + n2 + · · ·+ nk = s0 · 100 + s1101 + s2102 + s3103 + s4104 + s5105 + s6106 + s7107,

where sp is the sum of the digits in the nk which are in the (p + 1)st place value counting from
right to left. As an example with k = 5, consider

147 + 82 + 3 + 5 + 6︸ ︷︷ ︸
n1+n2+n3+n4+n5

= (7 + 2 + 3 + 5 + 6) · 100 + (4 + 8) · 101 + 1 · 102︸ ︷︷ ︸
s0100+s1101+s2102

,

where for this example s3 = s4 = s5 = s6 = s7 = 0. In general we must have s0 + s1 + s2 + s3 +
s4 + s5 + s6 + s7 = 36. Therefore,

n1 + n2 + · · ·+ nk = 36 + s1(101 − 1) + s2(102 − 1) + s3(103 − 1) + s4(104 − 1)

+ s5(105 − 1) + s6(106 − 1) + s7(107 − 1).

All terms here are divisible by 9.

2. In the figure points A, B, G, S are on a circle whose center is at M , and O is a point on the
extension of the diameter AB. Moreover, OG is tangent to the circle, with both GH and SM
perpendicular to the diameter AB. Suppose a = OA and b = OB, with 0 < a < b. Express the
inequalities

OH < OG < OM < OS

in terms of a and b.

G

S

O
A H M B
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Solution. Start with the observation that

OM =
OA+OB

2
=
a+ b

2
.

Now let r = MG = MS = MA = MB be the radius of the circle. Then

OB −OA = b− a = 2r,

showing that r = 1
2(b− a) and

OS =
√
OM2 + r2 =

√(a+ b

2

)2
+
(b− a

2

)2
=

√
a2 + b2

2
.

Next, consider

OG =
√
OM2 − r2 =

√(a+ b

2

)2
−
(b− a

2

)2
=
√
ab.

Finally, notice that ∆HMG is similar to ∆GMO. It follows that

HM

r
=

r

OM
.

Since HM = OM −OH, the last equation becomes

OM −OH
r

=
r

OM
,

from which we find

OH = OM − r2

OM
=
a+ b

2
− 2

a+ b

(b− a
2

)2
=

2

a+ b

[(a+ b

2

)2
−
(b− a

2

)2]
=

2ab

a+ b
.

Collecting the results, we see that, expressed in terms of a and b, the stated chain of inequalities is
the following.

2ab

a+ b
<
√
ab <

a+ b

2
<

√
a2 + b2

2

We have assumed that 0 < a < b, but note that were 0 < a = b, then all expressions would equal
a. Finally note that we might express the leftmost expression in the chain as

2ab

a+ b
=

1
1

a
+

1

b
2

,

which is the harmonic mean of a and b. In order the expressions in the chain are the harmonic
mean, geometric mean, arithmetic mean, and quadratic mean (or root mean square) of a and b.

3. In the hexadecimal (base-16) number system a (nonstandard) notation for the base symbols is
the following.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, u, v, w, x, y, z

(a) Find the hexidecimal representation of the decimal number (301.5)10.

(b) Find the decimal representation of the hexadecimal number (z.u9v)16. You may give your
answer as a fraction in simplest form.
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Solution. For (a) the number (301.5)10 has integer part (301.0)10 and fractional part (0.5)10. To
convert the integer part to base-16, consider

301/16 = 18 remainder 13

18/16 = 1 remainder 2

1/16 = 0 remainder 1.

So the hexadecimal representation of (301.0)10 is (12x.0)16. As a double check, 1 · 162 + 2 · 16 + 13 ·
160 = 256 + 32 + 13

X
= 301. To convert the fractional part (0.5)10 to hexadecimal, we simply note

that

0.5 · 16 = 8 + 0,

showing (0.5)10 = (0.8)16. We conclude that (301.5)10 = (12x.8)16. For (b) notice that

163(z.u9v)16 = (zu9v.u9v)16.

Therefore,

(163 − 1)(z.u9v)16 = (zu9v.u9v)16 − (z.u9v)16

= (zu9v.0)16 − (z.0)16

= z · 163 + u · 162 + 9 · 161 + v · 160 − z · 160

= 15 · 4096 + 10 · 256 + 9 · 16 + 11− 15

= 61440 + 2560 + 144 + 11− 15

= 64155− 15

= 64140,

and we have

(z.u9v)16 = 64140
163−1 = 64140

4095 = 4276
273 .

Remark. Here is another approach to part (b) which involves geometric series.

(z.u9v)16 = 15 · 160 + 10 · 16−1 + 9 · 16−2 + 11 · 16−3 + 10 · 16−4 + 9 · 16−5 + 11 · 16−6 + · · ·
= 15 + 10

16 + 9
162

+ 11
163

+
(
10
16 + 9

162
+ 11

163

)
1

163
+
(
10
16 + 9

162
+ 11

163

)
1

166
+ · · ·

= 15 +
(
10
16 + 9

162
+ 11

163

)(
1 + 1

163
+ 1

166
+ · · ·

)
.

Now we compute 10
16 + 9

162
+ 11

163
= 1

4096(2560 + 144 + 11) = 2715
4096 , in order to write

(z.u9v)16 = 15 + 2715
4096

∞∑
k=0

(
1

4096

)k
= 15 + 2715

4096
4096
4095

= 15 + 181
273 .

The middle equality follows from the formula for a convergent geometric series:

∞∑
k=0

rk =
1

1− r
, |r| < 1.

Therefore,

(z.u9v)16 = 4095+181
273 = 4276

273 ,

as found earlier.
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4. Let T be a solid equilateral triangle, with center point O. Suppose the shown segment with
endpoints O and P has length 2. Define the region R ⊂ T to be all points Q inside T such that the
triangle ∆OPQ has an obtuse angle. What is the area of R?

PO 2

Solution. For points within the radius-1 circle shown in the left figure, ∠OQP is obtuse, whereas
if Q were on the circle, then ∠OQP = 1

2π. See the solution for Problem 10, Round 1! So part
of the area of R stems from the intersection of this circle’s interior with T. This intersection (see
the right figure) is comprised of a sector of area 1

3π and two isosceles triangles, each with area 1
4

√
3.

So the area of the intersection is 1
3π + 1

2

√
3.

The remaining portion of R is the shaded 4-sided polygon also shown in the right figure. This
polygon arises as the intersection of two equilateral triangles, a larger one (in fact T itself) with
area 3

√
3, and a smaller triangle with area 4

3

√
3. Therefore, the area of the 4-sided polygon is 5

3

√
3.

The total area of R is then 1
3π + 1

2

√
3 + 5

3

√
3 = 1

3π + 13
6

√
3.

PO

Q

5. Consider the game boards shown in the figure, respectively with 4, 9, and 64 squares or cells.

(a) For the 4-cell board how many possible ways can 2 cells be chosen from the board? If 2 cells of
the 4-cell board are chosen at random, then what is the probability they will have a common side?

(b) Answer the same questions for the 9-cell board and the 64-cell board.

Solution. (a) (i) If we first choose the top-left cell, then there are 3 other ways the second cell
can be chosen. (ii) If we first choose the top-right cell, there are 2 other new ways the second
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cell can be chosen; choice of the top-left cell as the second cell corresponds to a choice of 2 cells
already considered in (i). (iii) If we first choose the bottom-right cell, there is 1 new way to choose
the second cell. (iv) Finally, if we first choose the bottom left cell, then all possibilities have
already been considered. So the number of possible ways to choose 2 cells from the 4-cell board is
3 + 2 + 1 = 6. This is the binomial coefficient “4 choose 2”:(

4

2

)
=

4!

2!(4− 2)!
= 6.

Neighoring cells share a common edge. Each cell of the 4-cell board has 2 neighbor cells, so the
number of ways to choose 2 adjacent cells is (with the division by 2 to correct for over-counting)

4 · 2
2

= 4.

So the probability of choosing 2 adjacent cells from the 4-cell board is

4

6
=

2

3
.

For (b) and the 9-cell board we can similarly reason brute-force. The number of ways to choose 2
cells is

8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 36 or equivalently

(
9

2

)
=

9!

2!(9− 7)!
= 36.

On the 9-cell board the interior cell as 4 neighbor cells, 4 of the edge cells have 3 neighbor cells,
and the 4 corner cells have 2 neighbor cells. So the number of ways to choose 2 adjacent cells is

1 · 4 + 4 · 3 + 4 · 2
2

= 12,

and the relevant probability is
12

36
=

1

3
.

Finally, for the 64-cell board we have 8× 8 = 64 total cells on the chess board. The total number
of ways to choose 2 cells out of 64 cells is(

64

2

)
=

64!

2! · 62!
=

63 · 64

2
= 63 · 32 = 2016.

Of the 64 total cells 6 × 6 = 36 cells (interior cells) have 4 neighbor-cells. Of the boundary cells,
6 + 6 + 6 + 6 = 24 have 3 neighbor-cells. Only the four corner boundary cells have 2 neighbor-cells.
The number of ways to choose 2 adjacent cells is then

36 · 4 + 24 · 3 + 4 · 2
2

= 112.

So the probability of choosing 2 adjacent cells from the 64-cell board is

112

2016
=

1

18
.

6. Recall the absolute value function

|x| =
{

x for x ≥ 0
−x for x ≤ 0,

and consider an ordered pair (x, y) of real numbers. Viewing (x, y) as a two-component vector, its
weighted 1-norm is ∥∥(x, y)

∥∥
(w1,w2)

= w1|x|+ w2|y|,
where w1 and w2 are strictly positive real numbers call the weights.
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(a) Sketch the region in the plane (in fact a polygon) whose points obey
∥∥(x, y)

∥∥
(4,2)
≤ 10.

(b) The region determined by
∥∥(|x|+ 1, |y| − 2)

∥∥
(4,2)
≤ 10 is also a polygon. Specify it.

Solution. For (a) notice that the region determined by ‖(x, y)‖(4,2) = 4|x| + 2|y| ≤ 10 will be
symmetric across both the x and y-axis. So we need only determine those points in the first
quadrant which obey the inequality. For non-negative x and y consider then ‖(x, y)‖4,2 = 10 or

4x+ 2y = 10.

This is line segment connecting the points (0, 5) and (52 , 0). The points in the first quadrant which
lie below this line obey 4x+2y < 10. Reflection of this first-quadrant region across both axes yields
the diamond region shown in Figure 1. The boundary segments of this diamond are determined by
the following equations.

(i) 4x+ 2y = 10 (first quadrant for 0 ≤ x ≤ 5
2)

(ii) −4x+ 2y = 10 (second quadrant for −5
2 ≤ x ≤ 0)

(iii) −4x− 2y = 10 (third quadrant for −5
2 ≤ x ≤ 0)

(iv) 4x− 2y = 10 (fourth quadrant for 0 ≤ x ≤ 5
2)

For (b) first consider the simpler inequality ‖(x + 1, y − 2)‖(4,2) = 4|x + 1| + 2|y − 2| ≤ 10. This
inequality determines the light-shaded diamond shown in Figure 2, namely the diamond in Figure 1
with its center translated from (0, 0) to (−1, 2). The translations of the corresponding boundary
segments listed in (i) and (iv) above are the following.

(i′) 4(x+ 1) + 2(y − 2) = 10 or 4x+ 2y = 10 (for −1 ≤ x ≤ 3
2)

(iv′) 4(x+ 1)− 2(y − 2) = 10 or 4x− 2y = 2 (for −1 ≤ x ≤ 3
2)

Segment (i′) connects the points (0, 5) and (32 , 2) in the first quadrant. Segment (iv′) connects

the points (12 , 0) and (32 , 2) in the first quadrant. The light-shaded diamond centered at (−1, 2) in
Figure 2 intersects the first quadrant in the dark-shaded region shown in the figure.

The final inequality to consider,

‖(|x|+ 1, |y| − 2)‖4,2 = 4||x|+ 1|+ 2||y| − 2| ≤ 10,

involves |x| and |y|; whence the region it specifies must be symmetric about both the x and y axes.
So the region in question is obtained via reflection across the coordinate axes of the dark-shaded
region in Figure 2. The resulting region is the 8-sided figure shown in Figure 3.

7. Let players A and B take turns flipping a fair coin with player A going first. The players flip
the coin until a tails occurs after a heads. The first player to toss tails immediately after a heads
wins. Find the probability that player A wins.

Solution. The nouns (and verbs) “toss” and “flip” are used as synonyms. Consider conditioning
on the first two flips, and let E be the event that player A wins. We order the past-to-future toss
outcomes left-to-right. Then, for example, A tossing tails followed by B tossing heads is represented
as TH. Via the rules of conditional probability,

P (E) = P (E|HH)P (HH) + P (E|HT )P (HT ) + P (E|TH)P (TH) + P (E|TT )P (TT )

= 1
4

[
P (E|HH) + P (E|HT ) + P (E|TH) + P (E|TT )

]
,

since for a fair coin P (HH) = P (HT ) = P (TH) = P (TT ) = 1
4 . Note that P (E|HT ) = 0, since in

this case player B wins. Next, note that P (E|TT ) = P (E), since the outcome TT is equivalent to
the game not having started. Therefore, the above formula reduces to

P (E) = 1
3

[
P (E|HH) + P (E|TH)

]
.
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Figure 1. Shaded region for which 4|x|+ 2|y| ≤ 10.
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Figure 2. Shaded region for which 4|x+ 1|+ 2|y − 2| ≤ 10.

For the two conditional probabilities P (E|HH) and P (E|TH), we have a situation where player
B just tossed H, and player A might win on their next toss. Set p1 = P (E|HH) = P (E|TH), so
that from above

P (E) = 2
3p1.
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Figure 3. Shaded region for which 4||x|+ 1|+ 2||y| − 2| ≤ 10.

We determine the probability p1 by conditioning on the next toss. Note that if the next toss is an
H, then player B has the advantage and wins with probability p1. In this case, player A wins with
probability 1− p1. Therefore,

p1 = 1
2(1− p1) + 1

2 ,

showing p1 = 2
3 and P (E) = 4

9 .

8. Given p(x) = 1
2x

2 − x+ 1
3 , consider the quadratic equation p(x) = 0. Starting with x0 = 0, the

iterative scheme

xk+1 = xk −
1
2x

2
k − xk + 1

3

xk − 1
,

generates a Newton sequence x0, x1, x2, . . . which converges to a root of the quadratic equation.

(a) Find the roots x− and x+ of this quadratic equation, assuming x− < x+. Write down the first
three terms x0, x1, x2 of the Newton sequence.

(b) Assuming 0 ≤ xk < x−, show that (i) xk < xk+1 and (ii) xk+1 < x−. Hint: for (ii) consider
p(xk + (x− − xk)).

(c) Specify the real numbers a and θ in the following exact formula for the iterates in the sequence.

xk = a
(1− θ2k−1

1− θ2k
)

Solution. (a) The roots of the quadratic equation 1
2x

2 − x+ 1
3 = 0 are

x± = 1±
√

1
3 ,
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and clearly 0 < x− < x+. Starting with the “guess” (a more becoming term is “initial iterate”)
x0 = 0, we find

x1 = 0−
1
3

−1
= 1

3 , x2 = 1
3 −

1
2
1
9 −

1
3 + 1

3
1
3 − 1

= 5
12 .

(b) For any x ∈ [0, x−) we claim that

(i) x < x−
1
2x

2 − x+ 1
3

x− 1
, (ii) x−

1
2x

2 − x+ 1
3

x− 1
∈ [0, x−).

To show (i), let x ∈ [0, x−), and first write the polynomial p(x) = 1
2(x − x−)(x − x+) in factored

form. This shows p(x) > 0 for x < x−. Moreover,

0 ≤ x < x− = 1−
√

1
3 =⇒ −1 ≤ x− 1 < −

√
1
3 .

So we see for x ∈ [0, x−) that the right-hand side of the iteration has the form

x−
1
2x

2 − x+ η

x− 1
= x− strictly positive number

strictly negative number
> x,

establishing (i). To show (ii), follow the hint and write

0 = p(x−) = p(x+ (x− − x))

= p(x+ ∆x)

= 1
2(x+ ∆x)2 − (x+ ∆x) + 1

3

= p(x) + (x− 1)∆x+ 1
2∆x2.

Rearrangement then gives

∆x+
p(x)

x− 1
= −

1
2∆x2

x− 1
,

where the division by x − 1 is allowed since we showed above the x − 1 < 0 for x ∈ [0, x−). From
the last formula,

x− −
(
x− p(x)

x− 1

)
= −

1
2(x− − x)2

x− 1
> 0,(1)

again using x− 1 < 0. Therefore,

0 ≤ x− p(x)

x− 1
< x−,

where we have inserted the inequality on the left using result (i). This is result (ii).

(c) For k = 1, 2, 3 the stated formula becomes

0 = x0 = a
(1− θ0

1− θ

)
, 1

3 = x1 = a
( 1− θ

1− θ2
)
, 5

12 = x2 = a
(1− θ3

1− θ4
)
.(2)

The first equation here is 0 = 0, and so is content-less. We might speculate that xk approaches x−
as k → ∞, and consistently guess that a = x−. With this assumption, the middle equation in (2)
is

1
3 =

(
1−

√
1
3

)( 1

1 + θ

)
=⇒ θ = 2−

√
3.

The same results can be found from the last two equations in (2). Indeed,

5
4 =

x2
x1

=
1− θ3

1− θ4
1− θ2

1− θ
=
θ2 + θ + 1

θ2 + 1
=⇒ θ2 − 4θ + 1 = 0.

This quadratic equation is solved by θ± = 2±
√

3. Now write the second equation of (2) as

a = 1
3(1 + θ).
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Therefore, we find two solutions

θ− = 2−
√

3, a− = 1−
√

1
3 and θ+ = 2 +

√
3, a+ = 1 +

√
1
3 .

The first pair is the one arrived at earlier. Because θ−1− = θ+, we have that

a−

(1− θ2k−1−

1− θ2k−

)
= a−θ+

(θ2k−1+ − 1

θ2
k

+ − 1

)
= a+

(1− θ2k−1+

1− θ2k+

)
,

showing that the two solutions define the same Newton iterates.

Remarks. The results from (b) show that x0, x1, x2, . . . is a strictly increasing sequence bounded
above by x−. It follows (by the Monotone Convergence Theorem) that the sequence converges to
a number r ≤ x−, where r is the least upper bound of the sequence. However, only r = x− is
consistent with the form of the iteration; indeed −p(xk)/(xk − 1) = xk+1 − xk → 0 must hold as
k → ∞. Since p(x) is a continuous function, this implies p(r) = 0, and so r = x−. Alternatively,
one may use (1) to write

x− − xk+1 =
1
2(x− − xk)2

1− xk
<

1
2(x− − xk)2

1− x−
.

This shows that the errors are positive, and each is proportional to the square of the last. Note
also x− − x0 = x− < 1. We conclude x− − xk → 0+ as k →∞.

For (c) let us the derive the formula with (θ−, a−) for the iterates from scratch. Notice that

p(r) = 1
2(x− x−)(x− x+), x− 1 = 1

2

[
(x− x+) + (x− x−)

]
.

So the iteration is

xk+1 = xk −
(xk − x−)(xk − x+)

(xk − x+) + (xk − x−)
.

From this equation we get both

xk+1 − x− =
(xk − x−)2

(xk − x+) + (xk − x−)
, xk+1 − x+ =

(xk − x+)2

(xk − x+) + (xk − x−)
,

and together these yield
xk+1 − x−
xk+1 − x+

=
(xk − x−)2

(xk − x+)2
.

From the last formula and induction on k

xk − x−
xk − x+

= θ2
k
, θ =

x−
x+

=

√
3− 1√
3 + 1

< 1.

Rearrangement gives the formula

xk = x−

(1− θ2k−1

1− θ2k
)
.

So a = 1−
√

1
3 and θ = (

√
3− 1)/(

√
3 + 1) = 2−

√
3, corresponding to the (θ−, a−) representation

found earlier.


