UNM-PNM Statewide High School Mathematics Contest Round-2, 10 February 2024, 14:00-17:30

1. Consider a sum of natural numbers such that each digit from 1 to 8 appears only once. For example, the numbers $81,27,4536$ feature each digit from 1 to 8 only once and sum to $81+27+$ $4536=4644$.
(a) Find such a sum which adds up to 243 .
(b) Find the integer nearest 2024 which can be represented as such a sum.
2. In the figure points A, B, G, S are on a circle whose center is at M, and O is a point on the extension of the diameter $A B$. Moreover, $O G$ is tangent to the circle, with both $G H$ and $S M$ perpendicular to the diameter $A B$. Suppose $a=\overline{O A}$ and $b=\overline{O B}$, with $0<a<b$. Express the inequalities

$$
\overline{O H}<\overline{O G}<\overline{O M}<\overline{O S}
$$

in terms of a and b.

3. In the hexadecimal (base-16) number system a (nonstandard) notation for the base symbols is the following.

$$
0,1,2,3,4,5,6,7,8,9, u, v, w, x, y, z
$$

(a) Find the hexidecimal representation of the decimal number $(301.5)_{10}$.
(b) Find the decimal representation of the hexadecimal number $(z \cdot \overline{u 9 v})_{16}$. You may give your answer as a fraction in simplest form.
4. Let \mathcal{T} be a solid equilateral triangle, with center point O. Suppose the shown segment with endpoints O and P has length 2. Define the region $\mathcal{R} \subset \mathcal{T}$ to be all points Q inside \mathcal{T} such that the triangle $\triangle O P Q$ has an obtuse angle. What is the area of \mathcal{R} ?

5. Consider the game boards shown in the figure, respectively with 4,9 , and 64 squares or cells.
(a) For the 4 -cell board how many possible ways can 2 cells be chosen from the board? If 2 cells of the 4 -cell board are chosen at random, then what is the probability they will have a common side?
(b) Answer the same questions for the 9 -cell board and the 64 -cell board.

6. Recall the absolute value function

$$
|x|=\left\{\begin{aligned}
x & \text { for } x \geq 0 \\
-x & \text { for } x \leq 0,
\end{aligned}\right.
$$

and consider an ordered pair (x, y) of real numbers. Viewing (x, y) as a two-component vector, its weighted 1-norm is

$$
\|(x, y)\|_{\left(w_{1}, w_{2}\right)}=w_{1}|x|+w_{2}|y|,
$$

where w_{1} and w_{2} are strictly positive real numbers call the weights.
(a) Sketch the region in the plane (in fact a polygon) whose points obey $\|(x, y)\|_{(4,2)} \leq 10$.
(b) The region determined by $\|(|x|+1,|y|-2)\|_{(4,2)} \leq 10$ is also a polygon. Specify it.
7. Let players A and B take turns flipping a fair coin with player A going first. The players flip the coin until a tails occurs after a heads. The first player to toss tails immediately after a heads wins. Find the probability that player A wins.
8. Given $p(x)=\frac{1}{2} x^{2}-x+\frac{1}{3}$, consider the quadratic equation $p(x)=0$. Starting with $x_{0}=0$, the iterative scheme

$$
x_{k+1}=x_{k}-\frac{\frac{1}{2} x_{k}^{2}-x_{k}+\frac{1}{3}}{x_{k}-1},
$$

generates a Newton sequence $x_{0}, x_{1}, x_{2}, \ldots$ which converges to a root of the quadratic equation.
(a) Find the roots x_{-}and x_{+}of this quadratic equation, assuming $x_{-}<x_{+}$. Write down the first three terms x_{0}, x_{1}, x_{2} of the Newton sequence.
(b) Assuming $0 \leq x_{k}<x_{-}$, show that (i) $x_{k}<x_{k+1}$ and (ii) $x_{k+1}<x_{-}$. Hint: for (ii) consider $p\left(x_{k}+\left(x_{-}-x_{k}\right)\right)$.
(c) Specify the real numbers a and θ in the following exact formula for the iterates in the sequence.

$$
x_{k}=a\left(\frac{1-\theta^{2^{k}-1}}{1-\theta^{2^{k}}}\right)
$$

