UNM - PNM STATEWIDE MATHEMATICS CONTEST LII

February 1, 2020 Second Round Three Hours

1. Calculate the sum of the roots for $|2 x-4|=5$.
2. Show that there exist two numbers, among any $k+1$ numbers, such that their difference is divisible by k.
3. For any $p>1$ and $a, b>0$, we have the property that the graph of the function $f(x)=x^{p}$ for $a \leq x \leq b$ lies below the line segment joining $(a, f(a))$ and $(b, f(b))$. That is, let $(x, l(x))$ denote the points on the line segment joining $(a, f(a))$ and $(b, f(b))$. Then we have $f(x)<l(x)$ for $a<x<b$, as illustrated in the figure below for $a=0.1, b=1$ and $p=2$.

Use this fact to show that

$$
(2020)^{2020}<2^{2019}\left(2000^{2020}+20^{2020}\right)
$$

4. Let us consider a curve C and a line l in \mathbb{R}^{2}. The equation of the curve C is $y=\sqrt{-x^{2}-2 x}$ and the equation of the line l is $x+y-m=0$. For a particular value of m, l and C may either not intersect, or interact at one point, or intersect at two different points. Determine all the possible m such that C and l have two different intersection points.
5. Let

$$
x, a_{1}, a_{2}, a_{3}, y \quad \text { and } \quad b_{1}, x, b_{2}, 2 y, b_{3}
$$

be the terms from two geometric sequences, where $x \neq 0$ and $y \neq 0$. Calculate $\frac{b_{3} a_{1}^{8}}{a_{2}^{8} b_{1}}$.
6. Let $x=0.82^{0.5}, y=\sin (1), z=\log _{3}(\sqrt{7})$. Determine the largest and smallest numbers among x, y, z.
7. Let $\triangle A B C$ be an acute triangle. $\angle C=2 \angle A$ and $2|A C|=|A B|+|B C|$. Calculate $\sin \angle A$.
8. Let x_{1}, x_{2}, x_{3} be the three roots of $x^{3}-x+1=0$. Calculate $x_{1}^{5}+x_{2}^{5}+x_{3}^{5}$.
9. What is the remainder when the number
$12+11\left(13^{1}\right)+10\left(13^{2}\right)+9\left(13^{3}\right)+8\left(13^{4}\right)+7\left(13^{5}\right)+6\left(13^{6}\right)+5\left(13^{7}\right)+4\left(13^{8}\right)+3\left(13^{9}\right)+2\left(13^{10}\right)+13^{11}$ is divided by 6 ?
10. A five-digit number is formed by randomly choosing (with no repetitions) a number from $0,1,2,3,4,5,6,7,8,9$ for each digit. For example, 10234 is a valid number, while 12325 is not (since 2 is repeated in the latter number).
(a) Show that the number thus formed is divisible by 9 if and only if the sum of its digits is divisible by $9($ e.g. $92034 \bmod 9=0$ and $(9+2+0+3+4) \bmod 9=18 \bmod 9=0)$.
(b) What is the probability that the five-digit number thus formed is divisible by 90 ?

