
UNM - PNM STATEWIDE MATHEMATICS CONTEST L

February 3, 2018 Second Round Three Hours

1. Let x 6= y be two real numbers. Let x, a1, a2, a3, y and b1, x, b2, b3, y, b4 be two arithmetic
sequences. Calculate b4−b3

a2−a1 .

Answer: 8
3
.

Solution: Notice that a2 − a1 = 1
4
(y − x), b4 − b3 = 2

3
(y − x). So b4−b3

a2−a1 = 8
3
.

2. Determine all positive integers a such that a < 100 and a3 + 23 is divisible by 24.

Answer: 1, 25, 49, 73, 97.

Solution: By assumption we have 24 | a3− 1. It is easy to see that a ≡ 1 (mod 8) and a ≡ 1
(mod 3). Thus a ≡ 1 (mod 24). Since a < 100, we conclude that a = 1, 25, 49, 73, 97.

3. Let a1 < a2 < a3 be three positive integers in the interval [1, 14] satisfying a2 − a1 ≥ 3 and
a3 − a2 ≥ 3. How many different choices of (a1, a2, a3) exist?

Answer: 120.

Solution: Let a′1 = a1, a
′
2 = a2 − 2, a′3 = a3 − 4. Then 1 ≤ a′1 < a′2 < a′3 ≤ 10. So we have(

10
3

)
= 120 different choices.

4. Suppose ABCD is a parallelogram with area 39
√

95 square units and ∠DAC is a right angle.
If the lengths of all the sides of ABCD are integers, what is the perimeter of ABCD?

Answer: 90 units. Suppose the length of DC is y and the length of AD is x and the length
of AC is z. By the Pythagorean theorem x2 + z2 = y2. Also since ∠DAC is a right angle the
area of ABCD is xz = 39

√
65. Multiplying the Pythagorean relation by x2 on both sides we

obtain x4 + x2z2 = x2y2 = x4 + (39)2 · 95 = x2y2. Thus x2(y2 − x2) = (39)2 · 95. Since x and
y are integers x must divide 39. So x = 1, 3, 13 or 39. Testing these yields x = 13 and y = 32
implying the perimeter is 90.

5. Let x and y be two real numbers satisfying x − 4
√
y = 2

√
x− y. What are all the possible

values of x?
Answer: {0} ∪ [4, 20].
Solution: Let a =

√
y, b =

√
x− y, (a, b ≥ 0). Then x = a2 + b2. The assumption implies

that
a2 + b2 − 4a = 2b.

By completing the squares, we get

(a− 2)2 + (b− 1)2 = 5, a, b ≥ 0.

Let C be the circle with center = (2, 1) and radius =
√

5. Let C̃ be the intersection of C and
the first quadrant. Then for a, b ∈ C̃, we either have a = b = 0 or a2 + b2 ∈ [4, 20].

6. A round robin chess tournament took place between 16 players. In such a tournament, each
player plays each of the other players exactly once. A win results in a score of 1 for the player,
a loss results in a score of −1 for the player and a tie results in a score of 0. If at least 75
percent of the games result in a tie, show that at least two of the players have the same score
at the end of the tournament.

Answer: There are
(
16
2

)
= 15 · 8 = 120 matches between the players and at least d.75 · 120e =

d90e = 90 were a tie, then there were at most 120 − 90 = 30 matches that resulted in wins
1



2

or losses. Suppose the 16 players had 16 different scores. This means there was at most one
player with a zero. We proceed by the pigeonhole principle. The two ”pigeonholes” are the set
of negative numbers and the set of positive numbers. Since there are at least 15 players with
non zero scores, at least d15/2e = 8 players had either positive scores or negative scores. Since
the players supposedly had all different scores then the absolute value of the sum of the scores
is at least 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 8·9

2
= 36 implying that at least 36 games resulted in a

win or loss, contradicting the fact that at most 30 matches resulted in a win or loss.

7. Let a, b be positive real numbers such that 1
a

+ 1
b

= 1. Show that

(a+ b)2018 − a2018 − b2018 ≥ 22·2018 − 22019.

Solution: We are going to show that for any positive integer n,

(a+ b)n − an − bn ≥ 22n − 2n+1.

By assumption we have ab = a + b. And a + b ≥ 2
√
ab. So we have a + b = ab ≥ 4. Thus

(a+ b)n = (ab)n ≥ 22n. Also we have an + bn ≥ 2
√

(ab)n ≥ 2n+1.
Now let us finish the rest of the proof by induction.
Step 1. Let n = 1. The inequality holds.
Step 2. Suppose the inequality holds for n = k. Then for n = k + 1, we have

(a+ b)k+1 − ak+1 − bk+1

=(a+ b)(a+ b)k − (a+ b)(ak + bk) + ab(ak−1 + bk−1)

=(a+ b)((a+ b)k − ak − bk) + ab(ak−1 + bk−1)

≥4(22k − 2k+1) + 4 · 2k

≥22(k+1) − 2k+2.

Thus the inequality holds for all n and in particular for n = 2018.

8. Using red, blue and yellow colored toothpicks and marshmallows, how many ways are there to
construct distinctly colored regular hexagons? (Note that two colored hexagons are the same if
we can either rotate one of the hexagons and obtain the other or flip one of the hexagons about
some line and obtain the other.)

Answer: 92
We can think of the hexagons as the disjoint union of the sets:

X1 = {all sides have the same color}
X2,(1,5) = {2 distinct colors distributed in the ratio 1:5}
X2,(2,4) = {2 distinct colors distributed in the ratio 2:4}
X2,(3,3) = {2 distinct colors distributed in the ratio 3:3}

X3,(1,1,4) = {3 distinct colors distributed in the ratio 1:1:4}
X3,(1,2,3) = {3 distinct colors distributed in the ratio 1:2:3}
X3,(2,2,2) = {3 distinct colors distributed in the ration 2:2:2}

Since these sets are disjoint, if we determine the cardinality of each of these sets, then the
sum of these sizes will be the number of distinct colorings.

Since there are 3 colors, |X1| = 3. To determine the size of X2,(1,5), note that there are
(
3
2

)
ways to choose the 2 colors and

(
2
1

)
ways to decide which of the two colors appears 5 times.

Since any rotation or mirror symmetry will be equivalent to the coloring xyyyyy where x and
y are the 2 colors, we see that |X2,(1,5)| = 3 · 2 = 6.
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Determining the size of X2,(2,4) is not only a matter of choosing the colors, but also the place-
ments. The placements preserved by symmetry are xxyyyy, xyxyyy, xyyxyy, thus |X2,(2,4)| =
3 · 2 · 3 = 18.

Similarly, we have to consider placement when determining the size ofX2,(3,3). The placements
preserved by symmetry are xxxyyy, xxyxyy, xyxyxy, thus |X2,(3,3)| = 3 · 3 = 9.

In determining the size of X3,(1,1,4), the colors are all used so it is a matter of choosing which
color occupies 4 sides and the possible placement of the 4 sides with the same color. Because
of reflections and rotations the ordering of the two singletons does not matter. The possible
placements are xxxxyz, xxxyxz, xxyxxz. Hence, |X3,(1,1,4)| = 3 · 3 = 9.

In determining the size of X3,(1,2,3), the colors are all used so it is a matter of choosing how
to distribute the colors among the three different numbers of colors of sides and to determine
the disinct placements upto symmetry. The possible placements are xxxyyz, xxxyzy, xxyyxz,
xxyzxy, xxzyxy, xyxyxz Hence, |X3,(1,2,3)| = 3 · 2 · 6 = 36.

In determining the size of X3,(2,2,2), the colors are all used so it is a matter of choosing
the disinct placements upto symmetry. The possible placements are xxyyzz, xyzxyz, xxyzyz,
xxyzzy, xyxzyz. Hence, |X3,(1,2,3)| = 1 + 1 + 9 = 11. Addding these up we obtain 92 colored
hexagons.

For those that know Burnside’s formula the group D6 of all symmetries of the regular hexagon
acting on the set X of all labellings of hexagons which has 36 elements. Let n be the number
of distinctly labelled hexagons. Then n · |D6| =

∑
g∈D6

|Xg| where Xg is the elements of X fixed

by the group element g. Let r be the rotation of 60 degrees and rn denote rotation by 60n
degrees. Let s1, s2 and s3 be the reflections about a pair of opposite midpoints and t1, t2 and t3
be reflections about the largest diagonals. The sizes of the sets |Xr0| = 63 and |Xr| = |Xr5 | = 3
since the only hexagons fixed by rotations of 60 or 300 degrees are when the sides are all the
same. |Xr2 | = |Xr4| = 9 since rotations of 120 and 240 degrees only preserve the colors of every
other side. |Xr3 = 27| since rotating by 180 degrees allows us three degrees of freedom. Sides 1
and 4 will be the same, 2 and 5 will be the same and 3 and 6 will be the same. |Xsi | = 34 and
|Xti | = 33. Thus n · 12 = 36 + 2 · 3 + 2 · 9 + 4 · 27 + 3 · 81 or n = 92.

9. Find the number of 4-tuples (a, b, c, d) with a, b, c and d positive integers, such that x2−ax+b =
0, x2 − bx+ c = 0, x2 − cx+ d = 0 and x2 − dx+ a = 0 have integer roots.

Answer: 11
Let x1 and x2 be the roots of x2− ax+ b = 0. Let x3 and x4 be the roots of x2− bx+ c = 0.

Let x5 and x6 be the roots of x2 − cx + d = 0. Let x7 and x8 be the roots of x2 − dx + a = 0.
We obtain

a = x1 + x2 = x7x8,

b = x3 + x4 = x1x2,

c = x5 + x6 = x3x4,

d = x7 + x8 = x5x6.

Adding the equations together we obtain

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 = x1x2 + x3x4 + x5x6 + x7x8.

This is equivalent to

(x1 − 1)(x2 − 1) + (x3 − 1)(x4 − 1) + (x5 − 1)(x6 − 1) + (x7 − 1)(x8 − 1) = 4.

The summands on the left are all nonnegative integers corresponding to the partitions of 4:
(0, 0, 0, 4), (0, 0, 1, 3), (0, 0, 2, 2), (0, 1, 1, 2), (1, 1, 1, 1). We will check cases to determine the so-
lutions. We will assume that x1 ≤ x2, x3 ≤ x4, x5 ≤ x6 and x7 ≤ x8.
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If one of these summands is 4, say (x1 − 1)(x2 − x1), then a) x1 = 2 and x2 = 5 or b) x1 = 3
and x2 = 3. In case a), using that x1x2 = 10 = x3 + x4 and the summand involving x3 and x4
is 0, then x3 = 1 and x4 = 9. Now x3x4 = 9 = x5 + x6 and the summand involving x5 and x6 is
also 0 so x5 = 1 and x6 = 8. Further x5x6 = 8 = x7 + x8 and the summand involving x7 and x8
is 0 so x7 = 1 and x8 = 7. Note that 2 + 5 = 1 · 7. In this case we obtain a = 7, b = 10, c = 9
and d = 8. We could have assumed that the summand involving x3 and x4 was 4, this would
give us a = 8, b = 7, c = 10 and d = 9 or the summand involving x5 and x6 was 4, this would
give us a = 9, b = 8, c = 7 and d = 10 or the summand involving x7 and x8 was 4, this would
give us a = 10, b = 9, c = 8 and d = 7. (4 total)

In case b) we would have x1x2 = 9 = x3 + x4 and as above we would obtain x3 = 1 and
x4 = 8 which implies x3x4 = 8 = x5 + x6 or x5 = 1 and x6 = 7 and x5x6 = 7 = x7 + x8 or
x7 = 1 and x8 = 6. Note that x7x8 = 6 = 3 + 3 = x1 + x2, implying that a = 6, b = 9, c = 8
and d = 7. Permuting like above we also have a = 7, b = 6, c = 9, d = 8, or a = 8, b = 7, c = 6,
d = 9 or a = 9, b = 8, c = 7, c = 6. (4 total)

If one of the summands is 3 and one is 1 or one of the summands is 2 and two are 1, arguing
as above we will obtain a contradiction so we obtain no 4 tuples in these cases.

If two are the summands are 2, as above we obtain x1 = 2 and x2 = 3. Then x3 + x4 = 6.
and x3 = 1 and x4 = 5 will be the only case when the summand is 2 or 0. Then we will obtain
5 = x5 + x6 = 2 + 3 otherwise we get a contradiction and 6 = x7 + x8 = 1 + 5. So in this case
we get the 4-tuples (5, 6, 5, 6) and (6, 5, 6, 5). (2 total)

If all four of the summands are 1, we obtain xi = 2 for all i and a = b = c = d = 4. (1 total).
We now see that there were a total of 11 4-tuples that will give integer solutions to this set of
4 quadratic equations.

10. Let A,B,C and D be points in the Cartesian plane each a distance 1 from the origin (0, 0).
We define addition of points in the plane componentwise (If P = (px, py) and Q = (qx, qy), then
P +Q = (px + qx, py + qy)). Show A+B +C +D = (0, 0) if and only if A,B,C and D are the
vertices of a rectangle.

Answer: We will denote the distance of a point P = (px, py) to the origin by |P | =
√
p2x + p2y.

If A+B + C +D = (0, 0), then A+B = −(C +D). Thus |A+B| = | − (C +D)| = |C +D|.
Squaring both sides and expanding we get (ax + bx)2 + (ay + by)

2 = (cx +dx)2 + (cy +dy)
2 which

implies a2x+2axbx+b2x+a2y+2ayby+b2y = c2x+2cxdx+d2x+c2y+2cydy+d2y. Regrouping we see that

|A|2 + |B|2 +2(axbx +ayby) = |C|2 + |D|2 +2(cxdx + cydy). Since A,B,C and D are all of length
1, then 2(axbx + ayby) = 2(cxdx + cydy). Note that A · B = (axbx + ayby) = |A||B| cos(θAB)
and C · D = (cxdx + cydy) = |C||D| cos(θCD). Thus θAB = ±θCD. Similarly, we see that
θAD = ±θBC . Since 360 = θAB + θBC + θCD + θDA = 2θAB + 2θBC . We see that θAB and θBC

are supplementary. Similarly θBC and θCD are supplementary. Hence the Diagonals of ABCD
are each of length 2 implying ABCD is a rectangle.

If ABCD is a rectangle inscribed in the unit circle, then the the line connecting the midpoint
of the segment connecting A and B to the midpoint of the segment connecting C and D
goes through the center of the rectangle which is (0, 0). The midpoints are (A + B)/2 and
(C + D)/2 respectively. Since |(A + B)/2| = |(C + D)/2|, then (A + B)/2 = −(C + D)/2 or
A+B + C +D = (0, 0).


