
UNM - PNM STATEWIDE MATHEMATICS CONTEST XLIX

February 4, 2017 Second Round Three Hours

1. What are the last two digits of 20172017?
Answer: 77. From Round 1, we know that (2017)4 ≡ 74 ≡ 1 mod 10. Thus 74k+1 ≡ 7 mod 10

for all integers k. Note that 2017 = 4(504)+ 1. So the units digit must be 7. To determine the
digit in the 10’s spot, it should help to find the smallest power k such that (2017)4k ≡ (17)4k ≡
1 mod 100.

Note that
174 ≡ 21 mod 100

174·2 ≡ 41 mod 100

174·3 ≡ 61 mod 100

174·4 ≡ 81 mod 100

174·5 ≡ 1 mod 100

Thus 20172017 ≡ 201717 mod 100. This will be precisely 1716 · 17 ≡ 81 · 17 ≡ 77 mod 100

2. Suppose A, R, S, and T all denote distinct digits from 1-9. If
√
STARS = SAT , what are A,

R, S, and T ?
Answer: A = 3, T = 9, S = 1 and R = 2. Since SAT is a 3 digit number and SAT 2 =

STARS is a 5 digit number then 1 ≤ S ≤ 3. However since that digit is S and only 12 = 1,
S = 1. Now since S and T are distinct and the only other digit a with a2 ≡ 1 mod 10 is a = 9,
T = 9. Now to determine A. We know that SA2 must begin with ST . Note that 152 = 225, so
1 < A < 5. We will look at 1292 = 16641 and 1392 = 19321 and 1492 = 22201. The only one
that fits the bill is 139. So A = 3 and R = 2.

3. Let f(x) =
x

x− 1
and g(x) =

x

3x− 1
.

(a) Determine f ◦ g(x) and g ◦ f(x).
(b) Denote h ◦ h ◦ · ◦ h

︸ ︷︷ ︸

n times

:= hn. Determine all the functions in the set

S = {H | H = (g ◦ f)n ◦ g or H = (f ◦ g)n ◦ f for some n a whole number}.

Answer: (a) f◦g(x) = x

−2x+ 1
and g◦f(x) = x

2x+ 1
(b) S = { x

nx− 1
| where n is an odd integer.}

Note that (a) is straightforward. First we need to determine (f ◦ g)n we will find a formula
using induction.

(f ◦ g)2 =
x

−2x+ 1
−2x

−2x+ 1
+ 1

=
x

−4x+ 1

Suppose (f◦g)n =
x

−2nx+ 1
, we easily see that (f◦g)n+1 =

x

−2(n+ 1)x+ 1
as the computation

above. So by induction (f ◦ g)n =
x

−2nx+ 1
.

Similarly (g ◦ f)n =
x

2nx+ 1
. Now

(f ◦ g)n ◦ f =
x

(−2n + 1)x− 1
1
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and

(g ◦ f)n ◦ g =
x

(2n+ 3)x− 1
.

The (f ◦ g)n ◦ f give us the set
{

x

(−2n + 1)x− 1
| n ≥ 0

}

and the (g ◦ f)n ◦ g give us the set
{

x

(2n+ 3)x− 1
| n ≥ 0

}

.

So S is the union of these 2 sets and hence,

S =

{
x

(2n+ 1)x− 1
| n ∈ Z

}

.

4. Find a second-degree polynomial with integer coefficients, p(x) = ax2 + bx+ c, such that p(1), p(3), p(5),
and p(7) are perfect squares, but p(2) is not.
Answer: A polynomial that satisfies the criteria is easily constructed by first centering it at
x = 4, that is

p(x) = â(x− 4)2 + ĉ.

Now we have two conditions: n2 = p(1) = 9â+ ĉ andm2 = p(3) = â+ ĉ that determines possible
candidates that can then be checked against the condition that p(2) is not a perfect square
and the condition that the coefficients are integers. A few possible answers are (n,m, â, ĉ) =
(0, 4,−2, 18), (1, 3,−1, 10), (2, 6,−4, 40), (3, 5,−2, 27), . . ..

5. Find all real triples (x, y, z) which are solutions to the system:

x3 + x2y + x2z = 40

y3 + y2x+ y2z = 90

z3 + z2x+ z2y = 250

Answer: There are 3 solutions (2, 3, 5) or (− 3

√
40

3
, 3
√
45, 3

√
54

3
) or ( 3

√
20,−3

3
√
20

2
, 5

3
√
20

2
).

Note that the three equations imply that

40

x2
=

90

y2
=

250

z2

implying that y = ±3x

2
and z = ±5x

2
.

Case 1: y = 3x

2
and z = 5x

2
. Then x2(x+ 3x

2
+ 5x

2
) = 40 or 5x3 = 40 whose only real solution

is x = 2. This gives the triple (2, 3, 5).
Case 2: y = −3x

2
and z = 5x

2
. Then x2(x− 3x

2
+ 5x

2
) = 40 or 2x3 = 40 whose only real solution

is x = 3
√
20. This gives the triple ( 3

√
20,−3

3
√
20

2
, 5

3
√
20

2
).

Case 3: y = 3x

2
and z = −5x

2
. Then x2(x+ 3x

2
− 5x

2
) = 40 or 0 = 40 which implies there is no

real solution for this case.
Case 4: Then y = −3x

2
and z = −5x

2
. Then x2(x − 3x

2
− 5x

2
) = 40 or −3x3 = 40 whose only

real solution is x = − 3

√
40

3
. This gives the triple (− 3

√
40

3
, 3
√
45, 3

√
54

3
).
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6. There are 12 stacks of 12 coins. Each of the coins in 11 of the 12 stacks weighs 10 grams
each. Suppose the coins in the remaining stack each weigh 9.9 grams. You are given one time
access to a precise digital scale. Devise a plan to weigh some coins in precisely one weighing to
determine which pile has the lighter coins.

Answer: On the digital scale, place one coin from the 1st pile, 2 from the 2nd, 3 from the
3rd, continuing in this fashion until you have placed 12 from the 12th pile. The scale will have
12∑

i=1

i =
12 · 13

2
= 78 coins. If the pile weighs 779.9g, the first pile has the lighter coins. If the

pile weighs 779.8g, the second pile has the lighter coins. And in general, if the pile weighs
780− i(.1), the ith pile has the lighter coins.

7. Find a formula for
⌊n

4
⌋

∑

k=0

(
n

4k

)
for any natural number n.

Answer: The formula is
2n + (1 + i)n + (1− i)n

4
.

First recall from the binomial theorem that
(
n

4k

)
is the coefficient of x4k in the expansion of

(1+x)n. The sum above only includes the coefficients of the powers of x which are divisible by
4.

Note that 1 = i4k = (−1)4k = (−i)4k. For any k, 1 + i4k + (−1)4k + (−i)4k = 4.
However, because a4k+1 = a, for any k and a = 1, i,−1,−i, then

1 + i4k+1 + (−1)4k+1 + (−i)4k+1 = 1 + i− 1− i = 0.

Similarly, since i4k+3 = −i, (−i)4k+3 = i and (−1)4k+3 = −1 for any k, then

1 + i4k+3 + (−1)4k+3 + (−i)4k+3 = 1− i− 1 + i = 0.

Lastly,

1 + i4k+2 + (−1)4k+2 + (−i)4k+2 = 1− 1 + 1− 1 = 0.

Using the binomial theorem

(1+1)n+(1+ i)n+(1+−1)n+(1+−i)n =
n∑

k=0

(
n

k

)

+
n∑

k=0

(
n

k

)

ik+
n∑

k=0

(
n

k

)

(−1)k+
n∑

k=0

(
n

k

)

(−i)k.

Using the relations above almost all of the binomial coefficients cancel and we obtain

(1 + 1)n + (1 + i)n + (1 +−1)n + (1 +−i)n = 4

⌊n

4
⌋

∑

k=0

(
n

4k

)

.

Hence, the formula is
⌊n

4
⌋

∑

k=0

(
n

4k

)
=

2n + (1 + i)n + (1− i)n

4
.

8. Let ABC be a right triangle with right angle at C. Suppose AC = 12 and BC = 5 and CX
is the diameter of a semicircle, where X lies on AC and the semicircle is tangent to side AB.
Find the radius of the semicircle.

Answer: 10/3.
Consider the following triangle:
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C
B

A

X

5

r

We can compute the area in two ways A = 1/2 ·5 ·12 = 30 or A = 1/2 · r ·13+1/2 · r ·5 = 9r.
Setting the two areas equal we obtain r = 10/3.

9. Consider a triangulation (mesh) of a polygonal domain like the one in the figure below.
(a) Given the vertices of a triangle, devise a strategy for determining if a given point is inside

that triangle.
(b) Will your strategy work for polygons with more than three sides?
(c) After implementing your strategy in an optimally efficient computer code you find that

the search for a problem with 100 triangles, on average, takes 10 seconds. You refine the
triangulation by subdividing each of the triangles into smaller triangles by placing a new
vertex at the center of gravity of each triangle. On average, how long will it take to find a
point in the new mesh?
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Answer: Various solutions are possible. For example, a simple algorithm is to walk around the
polygon along one side at the time. If the point is always to the left (or always to the right) of
the line in the plane that coincides with the current side, then the point is inside (for triangles
this is done by dot-products).

Another option is to use the Jordan Curve Theorem: “Any continuous simple closed curve
in the plane, separates the plane into two disjoint regions, the inside and the outside”. This
theorem implies that if one casts a ray from the point at hand in any direction and count the
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number of intersections of the ray and the boundary of the polygon. If the number of crossings
is odd then the point is inside, see Figure ??.

The complexity will typically be linear so the new search will, on average, take half a minute
as the number of triangles have grown by a factor of three.

This problem is of significant practical importance in computer graphics. Additional infor-
mation can be found at: https://en.wikipedia.org/wiki/Point_in_polygon. If one only
consider triangles there are three techniques that are particularly popular: barycentric coordi-
nate system, parametric equations system, check sides with dot product. These are described
(along with explicit formulas and computer codes) in this blog post:
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
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Odd # crossings = inside

r❳❳❳❳❳③ Even # crossings = outside

Figure 1. Ray casting.

10. Newton’s method applied to the equation f(x) = x3 − x takes the form of the iteration

xn+1 = xn −
x3
n
− xn

3x2
n
− 1

, n = 0, 1, 2, . . .

(a) What are the roots of f(x) = 0?
(b) Study the behavior of the iteration when x0 > 1/

√
3 to conclude that the sequence

{x0, x1, . . .} approaches the same root as long as you choose x0 > 1/
√
3. It may be

helpful to start with the case x0 > 1.
(c) Assume −α < x0 < α. For what number α does the sequence always approach 0?
(d) For x0 ∈ (α, 1/

√
3) the sequence may approach either of the roots ±x∗. Can you find

an (implicit) expression that can be used to determine limits ai and ai+1 such that if
x0 ∈ (ai, ai+1) then the sequence approaches (−1)ix∗. Hint: a1 = 1/

√
3, ai > ai+1 and ai

approaches 1/
√
5 when i becomes large.

Answer:
Answer: (a) The roots are -1,0,1. (b) First consider x0 > 1. Let xn+1 = 1 + ε and xn = 1 + δ
with δ > 0. The iteration gives 0 < ε

δ
< 2

3
. Next consider 1/

√
3 < x0 < 1. As the signs of

the numerator and denominator in the rational part of the iteration does not change on the
interval under consideration we find that x1 > 1. Finally, x0 = 1 produces x1 = 1.

To answer (c), rewrite the iteration as xn+1 = − 2x3
n

1−3x2
n

, and note that for 0 ≤ x0 < 1/
√
3

the next iterate will be non-positive. Insisting that −x0 < x1 ≤ 0, so that x1 will be closer to
zero than x0 gives the limiting case x1 = −x0, or α(1 − 3α2) = −2α3, which has the solution
α = 1/

√
5.

Finally the implicit recurrence in (d) is obtained by running Newton backwards

ai −
a3i − ai
3a2

i
− 1

= −ai−1, a1 = 1/
√
3, . . . , a∞ = 1/

√
5.

https://en.wikipedia.org/wiki/Point_in_polygon
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html

