
SOLUTIONS

UNM - PNM STATEWIDE MATHEMATICS CONTEST XLVII

February 7, 2015 Second Round Three Hours

1. In the sequence

1, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, · · ·
what number occupies position 2015?

Solution: This sequence of numbers corresponds to an = 2k, where k is the largest power
of 2 appearing in the expansion n by powers of 2. Note that a3 = 2 and 3 = 21+20 = 2+1.
Similarly a10 = 8 and 10 = 23 + 21 = 8 + 2. We need only look at the expansion of 2015
by 2: 2015 = 210+29+28+27+26+24+23+22+21+20 to see that the 2015th number
is 210 = 1024.

2. Show that if S is a set of finitely many non-collinear points in the plane (i.e., not all of
the points are on the same line), then there is a line which contains exactly two of the
points of S. Is the claim true if S has infinitely many points? Hint: Use an extremal
configuration.

Solution: This is a problem for which it is helpful to consider an extremal configuration.
Suppose, the claim is not true, i.e., every line which contains two of the points of S contains
a third one. We know that the points of S are noncollinear, hence taking into account that
S has finitely many points there is a finite set of positive distances between points of S and
lines containing at least two (hence three) points of S. A useful extremal configuration
here is to consider a point D ∈ S and a line l containing at least three points of S realizing
the minimum of these distances. In other words given any line l′ on which we can find at
least three points of S and any point D′ ∈ S but D′ ∈ l′ we have that the distance from
D to l is not larger than the distance of D′ to l′. Let A, B and C be three points of S
lying on l. After possibly renaming them we can suppose that B and C are on the same
side of the perpendicular from D to l, see picture below and note that B could be N .
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Notice that BM ≤ NL < DN which is a contradiction with the minimality of the
distance between D and l. Therefore, there is a line which contains exactly two points of
S.

The claim is not true for a set of infinitely many points. A counterexample is given, for
example, by the two dimensional plane.
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3. Show that the bisect of an angle in a triangle divides the opposite side in segments whose
lengths have the same ratio as the ratio of the adjacent sides,

AN/NB = CA/CB

in the picture below. NOTE: The same is true for the bisector of an exterior angle of a
triangle, i.e., it divides the opposite side externally into segments that are proportional
to the adjacent sides. You do not have to write a proof of this fact.
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Solution: One way to prove the claim is to notice that any point on the bisect of an angle
is at equal distances to the sides of the angle, see picture. We can write the areas of△ACN
and △BCN in two ways, A△ACN = CH·AN

2
= NB′·AC

2
and A△BCN = CH·BN

2
= NB′·BC

2
.

Therefore,

A△ACN

A△BCN

=
AN

BN
=

AC

BC
.
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Another solution relies on the similar triangles (see picture below) △AA′N ≈ △BB′N
and △AA′C ≈ △BB′C to see AA′

BB′
= AN

BN
and AA′

BB′
= AC

BC
. The last two equalities imply

AN
BN

= AC
BC

which is what we needed to prove.
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4. There are 12 coins in a parking meter and we know that one of them is counterfeit. The
counterfeit coin is either heavier or lighter than the others. How can we find the fake coin
and also if it is heavier or lighter in three weighings using a balance scale? Hint:4=3+1.

Solution: This is a well known problem. You can find a solution to the stated and a
more general problem here

http://www.cut-the-knot.com/blue/OddCoinProblemsShort.shtml. Below we give the
solution of the 12 coin problem. Other solutions are possible!

Turning to the idea 4=3+1, divide the coins into three big groups of four coins and
then each of these into a small group of 3 and a tiny group of 1 coin. Put two of the big
groups on the scale and note the condition of the balance. If the scale is balanced then
these two big groups have real coins and the fake one is in the third big group. If the
scale is not balanced, then the coins in the third big group are all real. This is the first
weighing.

In the second weighing, rotate the small groups (of 3 coins), taking off the scale the
one on the left pan, moving the small group from the right pan to the left, while placing
the small group of the third big group on the right pan. Observe again the condition of
the balance.

If in the second weighing there is no change of the balance on the scale, i.e., it stays
even or the same side is heavier, then all small coin groups are real coins and the fake one
is in one of the three tiny groups (of 1 coin). Remove the small groups from the balance,
and rotate the tiny groups (of 1 coin) as we did above for the small groups. This is the
third weighing, and will identify the odd coin and determine its relative weight.

If in the second weighing there is a change, it will identify the small group that contains
the fake coin and in addition determine its relative weight. Put aside all other coins except
the coins from the small group with the fake coin. Put one coin on each pan leaving the
third one on the table. This is the third weighing in this case, which will identify the odd
coin noting that the relative weight has already been determined.

5. Let A and B be two points in the plane. Describe the set S of all points in the plane such
that for any point P in S we have |PA| = 3|PB|.
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Solution: We are looking for all points P such that |PA| = k|PB| where k > 0 is a
given constant. Notice that for k = 1 this is just the line through the midpoint of AB
which is perpendicular to AB. In the general, case the answer is a circle centered on the
line determined by AB. The precise circle can be found in several ways.

The first solution we present uses Cartesian coordinates. Consider a coordinate system
centered at A with x-axis pointing in the direction of B. The given points are A(0, 0) and
B(c, 0) for some c > 0. A point P (x, y) satisfies the wanted condition iff

x2 + y2

(x− c)2 + y2
= k2.

Assuming that k > 1, the above equation can be written as follows by completing the
square,

x2 + y2 = k2(x− c)2 + k2y2

(k2 − 1)

(

x2 − 2
k2c

k2 − 1
+

k2c2

k2 − 1
+ y2

)

= 0

(k2 − 1)

((

x− k2c

k2 − 1

)2

+ y2

)

=
k4c2

(k2 − 1)2
− k2c2

k2 − 1
(

x− k2c

k2 − 1

)2

+ y2 =
k4c2

(k2 − 1)3

which is an equation of a circle centered at ( k2c
k2−1

, 0) and radius k2c

(k2−1)
√
k2−1

. The case of

k < 1 can be handles similarly.
Another solution can be obtained using Problem 3 and the similar identity for the outer

angle.
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Note that ∠MPN = π/2 while M and N are fixed on the line AB as determined by
the ratio of the lengths PA/PB = k. Thus the location of all such P ’s is the circle with
diameter MN .

6. A faulty calculator displayed ⋄38 ⋄ 1625 as an output of a calculation. We know that
two of the digits of this number are missing and these are replaced with the symbol ⋄.
Furthermore, we know that 9 and 11 divide the computed output. What are the missing
digits and the complete output of our calculation?
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Solution: Suppose the number is x38y1625, x and y are digits. Then we have 9|x+y−2
and 11|y− x+ 3− 8− 1 + 6− 2 + 5. Thus, x+ y − 2 = 9k and y − x+ 3 = 11n for some
integers k ≥ 0 and n. Hence, for the digits x and y we have

0 ≤ y = 1/2(9k + 11n)− 1/2 ≤ 9 and 0 ≤ x = 1/2(9k − 11n) + 5/2 ≤ 9.

Therefore, 0 ≤ 9k + 2 ≤ 18 which shows k equals 0 or 1. By inspection k = 1, n = 0 is
the only solution, which shows that the number is 73841625.

7. Let A be the average of the three numbers sin 2α, sin 2β and sin 2γ where α+ β + γ = π.
Express the product P = sinα sin β sin γ in terms of A.

Solution: From the given condition and a small calculation we have 1

−1 = eiπ = ei(α+β+γ) = eiαeiβeiγ

= (cosα + i sinα) (cos β + i sin β) (cos γ + i sin γ)

= cosα cos β cos γ − cosα sin β sin γ − cos β sinα sin γ − cos γ sinα sin β

+i (cosα cos β sin γ + cos β cos γ sinα + cosα cos γ sin β − sinα sin β sin γ) .

In particular, the imaginary part of the right-hand side vanishes, i.e.,

(1) sinα sin β sin γ = cosα cos β sin γ + cos β cos γ sinα + cosα cos γ sin β.

Next, we will use that

(2) cosα sin γ + cos γ sinα = sin (α + γ) ,

which follows easily from a comparison of the imaginary parts of

(cosα + i sinα) (cos γ + i sin γ) = eiαeiγ = ei(α+γ) = cos (α+ γ) + i sin (α + γ) .

Therefore, we have

cosα cos β sin γ + cos β cos γ sinα = cos β (cosα sin γ + cos γ sinα)

= cos β sin (α + γ) = cos β sin (π − β) = cos β sin β =
1

2
sin 2β,

since 2 cos β sin β = sin 2β by (2). Finally, from the above we can rewrite (1) as

sinα sin β sin γ = cosα cos β sin γ + cos β cos γ sinα+ cosα cos γ sin β

=
1

2
(cosα cos β sin γ + cos β cos γ sinα) +

1

2
(cos β cos γ sinα+ cosα cos γ sin β)

+
1

2
(cosα cos β sin γ + cosα cos γ sin β) =

1

4
(sin 2α + sin 2β + sin 2γ) =

3

4
A.

8. Suppose we draw circles of radius r with centers at every point in the plane with integer
coordinates. What is the smallest r such that every line with slope 2/7 has a point in
common with at least one of these circles?

Solution: Fix a Cartesian coordinate system in the plane. We will call the points with
integer coordinates lattice points. Consider the line l with slope 2/7 through the origin,
i.e., the green line through the points O and B below.

1We only need the imaginary part in the above identity so the calculation of the real part is given only

for completeness, but is unnecessary.
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We want to find an r > 0 as small as possible so that for any parallel to l line there is
some circle of radius r with center at a lattice point which a point in common with this
line. Take a point on the lattice which is not on l and is as close to l as possible (without
being on l). There is such a point since l has a rational slope so the rectangle OABC
”repeats” along the length of l (the picture is ”periodic” under translations by the vector
(7, 2)), hence it is enough to compare the (finitely many) distances to the line l from the
lattice points in the rectangle OABC. In the picture above E and D are such points.

The ”green” circles are centered at the lattice points and have radii equal to the distance
between E and l, while the ”red” circles are half the size of the ”green” circles. Notice
that if we draw identical circles of even smaller radii than the red circles, then we will
be able to put a line parallel to l which has no common points with any of these circles
as there will be an ”opening” between them. On the other hand taking larger radii will
cause an intersection between any line and the family of circles since it occurs already for
the ”red” circles. Thus, the answer is half of the distance between the point E and the
line l.

For the exact numerical values, first we need to determine the smallest non-zero distance
between the lattice points and the line l. For this we recall that given a line l : ax+by+c =

0 and a point P (x0, y0) then the distance between P and the line is proj~n
−→
OP where ~n is

a vector normal to the line, for example ~n = (a, b). In other words

dist(P, l) =

∣
∣
∣~n · −→OP

∣
∣
∣

|~n| .

By the periodicity, it is enough to compare the distances between the lattice points in
the upper half of the rectangle OABC and the line. This is how the point E is determined.
Finally,

d(E, l) =

∣
∣
∣
∣

(2,−7) · (3, 1)√
22 + 72

∣
∣
∣
∣
= 1/

√
53.

Therefore, the numerical answer is 1
2
√
53
.

9. What is the probability of picking at random three points on a circle of radius one so that
all three lie in a semicircle?

Solution: For three points on the unit circle which are the vertices of a triangle we
will determine the probability a that the triangle is acute, hence the sought probability
is o = 1− a.
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A triangle on the unit circle is determined by the lengths α, β and γ of the corresponding
arcs. Thus α + β + γ = 2π. Such triples can be represented as the points inside the
triangle with vertices A′(2π, 0, 0), B′(0, 2π, 0) and C ′(0, 0, 2π) in the Euclidean three space.
The triangle on the circle is acute iff each of the given arcs is less than π. Thus, the
configurations leading to an acute triangle are those satisfying the system

α + β + γ = 2π, α, β, γ > 0,

α < π, β < π, γ < π.

Geometrically, these are the points from the ”middle” triangle △ABC whose vertices are
at the midpoints of the sides of △A′B′C ′. Therefore, the probability for picking an acute
triangle is 1/4 while the probability for an obtuse triangle is o = 3/4.

10. Solve aa...a
︸ ︷︷ ︸

2k

− bb...b
︸ ︷︷ ︸

k

=

(

cc...c
︸ ︷︷ ︸

k

)2

, where cc...c
︸ ︷︷ ︸

k

denotes a number with k digits each one

equal to c.
Solution: Since

cc...c
︸ ︷︷ ︸

k

=
(
1 + 10 + 102 + ... + 10k−1

)
· c = 10k − 1

9
· c

we need to solve for a, b, c ∈ {1, 2, ..., 9} and k−positive integer the equation

102k − 1

9
· a− 10k − 1

9
· b =

(
10k − 1

9

)2

· c2

9
(
102k − 1

)
a− 9

(
10k − 1

)
b =

(
10k − 1

)2
c2

9
(
10k + 1

)
a− 9b =

(
10k − 1

)
c2

(
9a− c2

)
10k = 9 (b− a)− c2.

From the given condition we have 9 (b− a)−c2 ≤ 9 (9− 1)−1 = 71 and 9 (b− a)−c2 ≧
9 (1− 9)− 81 = −153. while the left-hand side is divisible by 10. Thus a possible solution
satisfies

9 (b− a)− c2 = 10n and
(
9a− c2

)
10k−1 = n,

where n = −10,−9,−8, 0,±1,±2, ..,±7.
If we consider the second equation, we notice that for k ≧ 2 it follows 10 divides n,

hence n = 0 or n = −10. Thus, for k ≧ 2 we have either k = 2 and

9 (b− a)− c2 = −100
9a− c2 = −1
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or k ≧ 2 and
9 (b− a)− c2 = 0

9a− c2 = 0.

The general solution of the first system (using a as a parameter) is
[

b = 2a− 11, c =
√
9a+ 1

]

,
[

b = 2a− 11, c = −
√
9a+ 1

]

.

Thus, the solution of the original problem is

a = 7, b = 3, c = 8, k = 2, i.e., 7777− 33 = 882

The general solution of the second system (using a as a parameter) is:
[
b = 2a, c = 3

√
a
]
,
[
b = 2a, c = −3

√
a
]
.

Thus, the solution of our problem for any k ≧ 2 are the triples

a = 1, b = 2, c = 3 and a = 4, b = 8, c = 6.

These correspond to 11...1
︸ ︷︷ ︸

2k

− 22...2
︸ ︷︷ ︸

k

=

(

33...3
︸ ︷︷ ︸

k

)2

and 44...4
︸ ︷︷ ︸

2k

− 88...8
︸ ︷︷ ︸

k

=

(

66...6
︸ ︷︷ ︸

k

)2

.

Let us consider the case k = 1. By a direct inspection the solutions here are:

11− 2 = 32, 11− 7 = 22, 22− 6 = 42, 33− 8 = 52,

44− 8 = 62, 55− 6 = 72, 66− 2 = 82, 88− 7 = 92.

Overall, we showed that all solutions of the given problem are

7777− 33 = 882,

11...1
︸ ︷︷ ︸

2k

− 22...2
︸ ︷︷ ︸

k

=

(

33...3
︸ ︷︷ ︸

k

)2

, 44...4
︸ ︷︷ ︸

2k

− 88...8
︸ ︷︷ ︸

k

=

(

66...6
︸ ︷︷ ︸

k

)2

, k ≥ 1,

11− 7 = 22, 22− 6 = 42, 33− 8 = 52,

55− 6 = 72, 66− 2 = 82, 88− 7 = 92.


