
UNM - PNM STATEWIDE MATHEMATICS CONTEST XLIV

February 4, 2012 Second Round Three Hours

1. How many 4 digit numbers with first digit 2 have exactly two identical digits (like 2011, or 2012)?

Answer: 432. The repeated number is either a 2 or a digit in the set {0, 1, 3, 4, 5, 6, 7, 8, 9}. Let A

be the set of 4 digit numbers starting with 2 which have an additional 2 among its digits and no other

repeated digits. We have 3 ways of choosing where to place the 2. The additional two digits can be

assigned in 9× 8 ways. Therefore, the number of elements of the set A is |A| = 3× 72 = 216. Let B

be the set of 4 digit numbers starting with 2 which have a repeated digit among the remaining three

digits. There are three ways of choosing where the two repeated digits among {0, 1, 3, 4, 5, 6, 7, 8, 9}
go. Since there are 9 possible digits to choose from, we have 27 ways of placing these digits. Once

we have chosen this digit there are 8 remaining digits left to place in the other digit. Hence there

are 27× 8 = 216 ways of placing the digits in B. Since A and B are disjoint sets we can compute the

number of elements which are either in A or in B as follows |A ∪B| = |A|+ |B| = 216 + 216 = 432.

2. If 15 cows can eat all the grass on 3 acres of land in 6 days and 25 cows can eat all the grass on 4

acres in 4 days, how many cows can eat all the grass on 6 acres in 3 days?

Answer: 45. The solution makes use of a number of assumptions which should have been stated

in the formulation of the problem. Let A be the initial amount of grass on one acre of land, assumed

to be the same for every acre in the considered problem. Let G be the rate at which the grass grows

each day on each acre. We shall assume that this rate is constant throughout the problem. Let E

be the number of acres of grass eaten by each cow per day. Again, we shall assume that this rate

is constant throughout the problem. Then let X be the number of cows that will clear 6 acres in 3

days - this is the number we want to find. We can set up the following three equations expressing

that the cows are eating the full amount of grass.

15 ·E · 6 = 3A+ 18G

25 ·E · 4 = 4A+ 16G

X ·E · 3 = 6A+ 18G

For example, the first equation expresses the fact that the amount of grass eaten by 15 of the cows

in 6 days is 15 · E · 6 and this quantity of grass should be the same as the initial amount 3A on 3

acres plus 3 · 6 · G = 18G-the grass that grew during the 6 days of feeding on these 3 acres. Notice

that the first two equations involve three variables. However, if we divide the third equation by E

we see that X can be computed from the last equation if we know the ratios A/E and G/E. In view

of the just made observation we simplify the above system to the following form.

A/E + 6 ·G/E = 30

A/E + 4 ·G/E = 25

X = 2 · A/E + 6 ·G/E

Subtracting the second equation from the first one, we obtain 2G/E = 5, hence

A/E = 25− 4 · 5/2 = 15.

Thus X = 2 · 15 + 6 · 5/2 = 45.

3. You are given a box full of 2012 flashlights which can be switched on or off by pressing the same

button. The position of the button does not indicate if the light of the flashlight is on or off. Suppose,
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you know that k of these flashlights are turned on. While blindfolded you have to figure a way to

split the flashlights in two groups which contain the same number of flashlights that are turned on.

For this you are allowed to take out of the box any number of the given flashlights and press the

on/off button as many times as you like. Remember, there is no way for you to know if the light of

any particular flashlight is on or off.

Solution: Take any k of the flashlights out and then press once the on/ off button of each one of

these k flashlights. Suppose n of the chosen k flashlights were on. So, among the randomly chosen k

flashlights n are switched on while the remaining k − n are off. After pressing the button (once!) of

each of the chosen flashlights we have k flashlights of which n are switched off while the remaining

k−n are on. On the other hand, the box still has the remaining k−n flashlights which were turned

on, so we have the required division in two groups.

4. A stack of 2012 cards is labeled with the integers from 1 to 2012, with different integers on different

cards. The cards in the stack are not in numerical order. The top card is removed from the stack

and placed on the table, and the next card is moved to the bottom of the stack. The new top card

is removed from the stack and placed on the table, to the right of the card already there, and the

next card in the stack is moved to the bottom of the stack. The process - placing the top card to the

right of the cards already on the table and moving the next card in the stack to the bottom of the

stack - is repeated until all cards are on the table. It is found that, reading from left to right, the

labels on the cards are now in ascending order: 1, 2, 3, . . . , 2011, 2012. In the original stack of cards,

how many cards were above the card labeled 2011?

Solution: We shall work backwards from when there are 2 cards left, since this is when the 2011

card is laid onto the table. When there are 2 cards left, the 2011 card is on the top of the deck. We

shall depict this situation symbolically as the ordered pair

xo,

where x stands for the card labeled 2011 and o stands for any other of the cards (we are not interested

in their labels). This is the card we shall be tracking in our reverse time process. In the forward

movement the next move from the state xo is to place the card x = 2011 on to the table. However,

since we are working backwords our moves are: i) ”move the bottom to the top” followed by ii) ”add

to the top a card from the table”. Pictorially our deck will run through the following states in which

the above two moves are displayed as: i) move the last symbol to the first position; ii) add a o in

front of the ordered sequence:

xo 7→ ox 7→ oox 7→ xoo 7→ oxoo 7→ ooxo 7→ o ooxo 7→ o ooox 7→ oo ooox

7→ xo oooo 7→ oxo oooo 7→ oox oooo 7→ ooox oooo 7→ oooo xooo 7→ o oooo xooo

7→ o oooo oxooo 7→ oo oooo oxoo 7→ oo oooo ooxo 7→ ooo oooo ooxo 7→ ooo oooo ooox

7→ xooo oooo oooo 7→ . . .

Recall that in the above picture we are going backwards in time, so 7→ means going back; the first

card in an ordered sequence oo . . . oooo ooxo . . . oooo is on the top of the deck while the last card

is at the bottom of the deck. Now we start counting. First notice that starting from the xoo state

every time the x comes to first position the next move is to add an o in front followed by adding an

o in front etc.. This means that if the x is first followed by k of the o’s, then the next time we see

x in the first position we would have added another k of the o’s. Therefore our ordered sequences

starting with x will be of lengths 2- this is the ”exceptional state”, 3, 2 · 3, 22 · 3, 23 · 3, etc, i.e., the
n-th time after the exceptional state we are going to see x in first position there are 2n−1 · 3 cards in

the deck. In other words the number of cards has doubled every time the x appears on top since its
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last appearance. Since

512 = 29 < 1536/3 < 210 = 1024

it follows that the last time we see x in the first place there are 3 · 512 = 1536 cards in the deck.

Continuing to go backwards, the x will be moving down in both moves i) and ii). Since there are

2012− 1536 = 476 of the o’s we still need to add then the x will move back to position 2 · 476 = 952

when we add the 46-th o to the front of the sequence. Therefore there will be exactly 951 of the o’s

in the end, meaning that there were 951 cards are above the one labeled 2011.

5. Add 13 to the month you were born multiplied by 10. Multiply the result by 10. Now add the day

of the month you were born. If you tell me the number you obtained I will be able to tell the day

and month you were born. Explain how I can do that. Notes: the month is expressed as a number

between 1 to 12; the day of the month you were born is a number between 1 to 31.

Solution: Let us write symbolically the operations that you are asked to do on the month m and

the day d of your birth date.

m 7→ 10m+ 13 7→ 100m+ 130 7→ 100m+ 130 + d = N.

Working in reverse, given N , I can compute N −130 = 100m+d. This shows that the last two digits

of N − 130 will be your birth day, the first two your month.

6. Given a natural number n let S(n) be the sum the digits of n. For example S(12304) = 1 + 2 + 3 +

0 + 4 = 10. Show that for any polynomial function

p(x) = a0 + a1x+ a2x
2 + · · ·+ akx

k

with positive integer coefficients a0, a1, . . . , ak we have that S(p(n)) will take on some value infinitely

many times as n runs through the set of natural numbers.

Solution: Let p(x) = a0 + a1x+ · · · + akx
k. Consider the values of p on the powers of 10,

p(10m) = a0 + a1 · 10m + a2 · 102m + · · ·+ ak · 10km.

We will give two solutions showing that S(p(10m)) will take on some value infinitely many times.

The first argument will show that this is indeed the case. The second argument will find a value,

namely S(a0) + S(a1) + · · · + S(ak), which will be taken on infinitely many times.

1st Solution: Start adding the numbers a0, a1 ·10m, a2 ·102m, etc. stopping to ”think” before every

addition. The goal of the ”thinking” is to observe if the number you are to add next has zeros in all

the digits of the number you have so far. If this is the case at every step then your sums are formed

by using the given numbers a0, a1, etc. being placed one after the other to the left of the previous

sum after placing some 0’s first. In the end the digits of p(10m) are just the digits of a0, a1, . . . , ak and

zeros. So, S(p(10m)) = S(a0) + S(a1) + · · ·+ S(ak). However, if on some step the ”next” number is

not large enough (you don’t move sufficiently to the left) then your sum will depend on the addition

of some of the given numbers. In any case, your final sum is either S(a0) + S(a1) + · · · + S(ak) or

depends on the sums of the given numbers. Since we are given finitely many numbers overall we

have finitely many possibilities of such ”interfering” additions while the digits of p(10m) are being

evaluated for infinitely many m’s. Therefore, some value must be taken on infinitely many times.

2nd Solution: Let us take a natural number N so that 10N is greater than any of the (finitely

many) numbers a0, a1, . . . , ak,

aj < 10N , for all j.
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For any m ≥ N and 1 ≤ j ≤ k − 1 then we have

a0 + a1 · 10m + a2 · 102m + · · · + aj · 10jm

≤ 10N + 10N · 10m + 10N · 102m + · · ·+ 10N · 10jm

= 10N
(

1 + 10m + 102m + · · ·+ cdot10jm
)

= 10N
10n(j+1) − 1

10n − 1
= 10n(j+1) − 1

10N

10n − 1
< 10n(j+1),

after using the formula for the sum of a geometric series 1 + q + q2 + · · · + qj = (qj+1 − 1)/(q − 1)

and q = 10m. The above calculation shows that aj+1 · 10m(j+1) has zeros in all the digits of the

number a0 + a1 · 10m + a2 · 102m + · · ·+ aj · 10jm. Since this is true for any 1 ≤ j ≤ k − 1 it follows

S(p(10m)) = S(a0) + S(a1) + · · ·+ S(ak) for all m ≥ N , which is what we wanted to prove.

7. Let C be a point on the segment AB. Consider the region bounded by the three semicircles with

diameters AC, AB and BC respectively. Show that the area of this region is equal to that of the

disc with diameter the semi-chord CD which is perpendicular to AB in C.

bA b Bb

C

b
D

Solution: This problem goes back to Archimedes. Let a, b and c be the lengths of AC, CB and

CD, respectively. In the first step we only use that the area of a disc of radius r is πr2. Therefore,

the sought area is

A =
π

2

(

(

a+ b

2

)2

−
(a

2

)2
−
(

b

2

)2
)

=
π

4
ab.

In the next step we use the properties of intersecting chords (or the formula for the height towards

the hypothenuse of right triangle) from which we have c2 = ab using that c is half of the length of

the chord through C and D. Thus the above formula for the area can rewritten as

A =
π

4
ab =

πc2

4
,

which is what we wanted to prove.
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8. Let C be a point on the segment AB. Consider the region bounded by the three semicircles with

diameters AB, AC and CB respectively. The semi-chord CD which is perpendicular to AB at C

divides the semicircle in two smaller regions.

(a) Inscribe a circle inside the smaller region containing A. Label the point where this circle inter-

sects the arc AD by E and the point where the circle intersects the semi-chord by F . Show that

E, F and B are collinear.

bA b Bb

C

b
D

b
E

b
F

(b) Show that the circles inscribed in the two regions bounded by the semicircles and the semi-chord

are congruent (i.e., have same radii)

bA b Bb

C

b
D

Solution: This problem goes back to Archimedes.

a) Let V and O be correspondingly the centers of the full circle in the ”left” region and the circle

with diameter AB as shown on the picture below. Let E be the common point of these two circles.

Since the two circles are tangent at E the radii EO and EV are both perpendicular to the common

tangent line at E. Therefore, the lines through EO and EV are parallel, and since they have a

common point E the points E, V and O are co-linear.

b
A

b

B

b
D′

b

C

b
bE

b

b

F
b

H
b

V

b b

O

b
D

b
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Similarly, if F is the common point of the circle (centered at V ) and the tangent to it line CD

we have that V F ⊥ CD. Sine we also have AB ⊥ CD it follows that V F ‖ AB. Therefore the

triangle EV F is similar to the triangle EOB. The co-linearity of E, V and O implies then that

∠V EF = ∠OEB. This shows that EF ‖ EB. Since EF and EB have a common point it follows

that the points E, F and B are co-linear.

b) Let D′ be the intersection of AE and CD. Since ∠AEF = ∠ACD′ = 90o it follows that F is

the orthocenter of triangle ABD′. Let HF be the diameter through F of the inscribed circle, hence

HF ⊥ CD′. The point H is on the segment AE since ∠HEF = 90o = ∠AEB taking also into

account part a).

b
A

b
B

b
D′

b

C

b I
bE

b

G

b

F
b

H
b

V

b b

O

b
D

b

b J

Let G be the intersection of the inscribed circle in the left region and the semicircle with diameter

AC. Next we shall see that G is also the intersection of the diagonals of the quadrilateral ACFH.

For this it is enough to show that ∠CGF = 90o since then all the angles at G are 90o. So, we consider

the common tangent to the circles at the point G. Let J be the intersection of this tangent and CF .

By the property of the tangents we have

|JG| = |JF | = |JC|.
Therefore G lies on the circle with diameter CF . This shows that ∠CGF = 90o.

In the final step we shall determine HF using similar triangles. In fact, we shall use △ACH ∼
△ABD′ (since both AF and BD′ are perpendicular to HC) and △D′HF ∼ △D′AC. The similar

triangle yield the identities

|AC|/|AB| = |AH|/|AD′| and |D′H|/|D′A| = |HF |/|AC|.
Therefore

|HF | = |AC| · |D
′H|

|D′A| = |AC| · |D
′A| − |AH|
|D′A| = |AC| · (1− |AC|/|AB|) = |AC| · |CB|

|AB| .

In particular, the diameter of the ”left” inscribed circle is determined by |AC|, |CB| and |AB|,
and depends in a symmetric way on |AC| and |CB|. This shows that the same formula holds for

the diameter of the circle inscribed in the ”right” region. Therefore the two inscribed circles are

congruent.

9. a) Find a number R such that for any three points on or inside a square of side of length one at least

two of the given points are at a distance at most R.

b) Determine the smallest number R0, such that, given any three point on or inside a square of

side of length one at least two of the given point are at distance at most R0.

Solution: a) There are infinitely many choices. For example take R =
√
2. Since this is the length

of the diagonal of the square any disc centered on the square of radius R =
√
2 contains the whole
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square. In particular given any two points on the square the distance between any two of them is at

most R. Therefore, the condition that at least two of the given point are at distance at most R is

met. The point is that smaller R’s have this property as we shall see in part b).

b) Consider, as shown on the picture below, the equilateral triangle APQ of side of length a,

where the lengths |BP | = |QD|. We can determine the value of a by the Pythagorean theorem (for

example). In fact, if we let x = |BP | = |QD|, then by the Pythagorean theorem applied to the right

triangles PCQ and ADQ gives a2 = 2(1− x)2 = 12 + x2, i.e.,

x2 − 4x+ 1 = 0.

Solving for x, taking into account that x > 0 it follows x = 2−
√
3. Hence

a =

√

1 + (2−
√
3)2 =

√

8− 4
√
3 = 2

√

2−
√
3.

We claim that R0 = a. The fact that any number 0 < R < a does not have the needed property

follows immediately by considering the three points A, P and Q. On the other hand, R0 = a has

the needed property, namely, given any three point on or inside the square of side of length one at

least two of the given point are at distance at most R0. We will show this fact as follows. Take any

three points on or inside the square. If the distance between any two is less than or equal to a then

there is nothing to prove. Suppose all sides of the triangle formed by these three points are strictly

greater than a. We will reach a contradiction in this case. Split the square in two parts by one if its

diagonals. At least two of the picked points will lie in one of the halves. We can replace the third

one by the opposite vertex of the square thereby increasing the distances between the ”three” points.

By renaming the vertices (or a rotation) of the square we can assume that the three points are A,

P ′ and Q′ as on the picture below, with P ′ and Q′ sitting above or on the diagonal BD. Since the

distances from A to P ′ and Q′ are greater than a it must be that P ′ and Q′ belong to the triangle

PQC. However, this is a contradiction since then |P ′Q′| < a.

bA b B

b CbD

b P

b
Q

bA b B

b CbD
b P ′

b
Q′

10. a) Suppose A, B, R and Q be four points in the plane so that the points R and Q lie on one side of

the line through the points A and B. Determine the position of the point P in the interior of the

segment AB so that the sum of the lengths of the segments RP and PQ is as small as possible.

bA b
B

b

P

b
R

b
Q

bA

b
C

b Bb

P

bR
b Q
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b) Let ABC be a given acute triangle. Determine the triangle PQR of smallest perimeter inscribed

in the triangleABC so that the vertices P , Q and R lie, correspondingly, on the sides AB, BC and

CA of the triangle ABC.

Solution: a) Let Q′ be the mirror image of Q with respect to the line through A and B. The

required length is minimal when P is the intersection P ′ of RQ′ with AB. This is indeed the case

since |RQ′| = |RP ′|+ |P ′Q|, |PQ| = |PQ′|, hence by the triangle inequality we have

|RP ′|+ |P ′Q| = |RQ′| ≤ |RP |+ |PQ′| = |RP |+ |PQ|
with equality iff P = P ′.

bA b Bb
P

b
R

b Q

b

Q′

rs

P ′

b) This part is known as Fagnano’s Problem. A solution can be obtained by applying part a)

using, correspondingly, each of the sides of the given triangle and the two vertices of the inscribed

triangle that are not on this side. Having this in mind it follows that the perimeter of the triangle

PQR is as small as possible exactly when each of its vertices is on the segment connecting any of the

other two vertices and the reflection of the remaining vertex with respect to the side containing the

first vertex. This is indeed possible by taking the orthic triangle, i.e, the triangle A′B′C ′ formed by

the feet of the altitudes from A, B and C towards the opposite sides of the triangle ABC.

A

C

B
C ′

A′

B′

C ′′

rs

H

The claim on the needed property of the orthic triangle follows from the key fact that the altitudes

AA′, BB′ and CC ′ of the triangle ABC are the (the angle) bisectors of the orthic triangle A′B′C ′.

Assuming the claim for the moment we note that it implies ∠AB′C ′ = ∠CB′A′, but since ∠AB′C ′ =

∠AB′C ′′ it follows

∠AB′C ′ = ∠CB′A′,

which shows that the points C”, B′ and A′ are co-linear. We can argue similarly for the other sides

or just relabel the vertices and apply the just made argument.

Next, we prove the claimed property of the orthic triangle. For this we use that if two right

triangles have a common hypothenuse then the quadrilateral formed by the vertices of the triangles

lie on the same circle (with diameter on the hypothenuse). This property implies the equality of

some angles which we shall exploit repeatedly. For example, considering the quadrilateral AC ′HB′
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we have

α = ∠B′AH = ∠B′C ′H,

while the quadrilateral BC ′HA′ yields

β = ∠A′BH = ∠A′C ′H.

Now, the two right triangles CA′A and CB′B with a common angle at the vertex C show that

α = β, i.e., CC ′ is the angle bisect at C ′ of the orthic triangle. Again, either by arguing similarly, or

relabeling the vertices we obtain this property at the remaining vertices.


