
UNM - PNM STATEWIDE MATHEMATICS CONTEST XLI

February 7, 2009 Second Round Three Hours

(1) An equilateral triangle is inscribed in a circle which is circumscribed by a square.
This square is inscribed in a circle which is circumscribed by a regular hexagon. If
the area of the equilateral triangle is 1, what is the area of the hexagon?

Proof. Note, that 1 = 3
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(2) Suppose you have a piece of paper which you cut into either four or sixteen pieces.
After that you cut again some of the pieces into either four or sixteen smaller pieces.
Suppose you have nothing else to do, so you keep repeating this procedure cutting
some of the pieces into either four or sixteen smaller pieces. Can you end up with
2009 pieces at some stage of your cutting process?

Proof. Every time we increase the number of pieces by 3k + 15l, where k is the
number of pieces that we cut into four, and l is the number of pieces we cut into
sixteen. Since we start with one piece of paper, in order to have 2009 pieces we must
have 2009 = 1+3n+15m for some natural numbers n and m. Thus 2008 = 3n+15m,
which is impossible since 3 does not divide 2008. ¤

(3) A group of 200 high school students visited the University of New Mexico for Lobo
Day. The students could participate in at most two of the following three workshops:
1) Algorithms, 2) Bioinformatics and 3) Coding. Suppose 100 students participated
in Algorithms, 90 participated in Bioinformatic, 80 participated in Coding.
(a) If 87 participated in both Algorithms and Bioinformatics or both Algorithms

and Coding. How many students participated in both Bioinformatics and Cod-
ing?

(b) If in addition 24 participated in Coding but not in Algorithms or Bioinformatics,
how many participated in both Algorithms and Bioinformatics?

Proof. (a) Let A, B and C denote the sets of students participating, correspond-
ingly, in the Algorithms, Bioinformatics and Coding workshops. Since the stu-
dents could participate in at most two workshops we have that the intersec-
tion A ∩ B ∩ C = ∅. Using the Inclusion-Exclusion Principle, |A ∪ B ∪ C| =
|A| + |B| + |C| − |A ∩ B| − |A ∩ C| − |B ∩ C| + |A ∩ B ∩ C|, we see that
|A ∪ B ∪ C| + |B ∩ C| = (100 + 90 + 80) − 87 = 183 since |A ∩ B ∩ C| = 0
and |A∩B|+ |A∩C| = 87. This shows that at most 183 students participated
in some workshop (even though 200 visited the University), and 13 students
participated only in Algorithms. Let us define the non-negative integer vari-
ables x = |A ∩ B|, y = |A ∩ C| and z = |B ∩ C|. For example, in the case
when exactly 183 students participated in some workshop we have z = 0 (the
minimum possible value), while x and y could be any solution of x + y = 87,
see Fig. 1. We could have less than 183 participants though, in which case z
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will be positive. For example we could have 181 participants as in the situation
depicted in Fig. 2.

However, we cannot have too few participants since each student can participate
in at most two workshops. What is then the minimum number of participants?
Notice that the smaller |A ∪ B ∪ C| is, the bigger z must be (since the sum
of these two number is always 183). The question then is to find what is the
maximum possible value of z. Since x = 87−y, we reduce to finding the biggest
z, such that, for some y

z ≥ 0, y ≥ 0, z + y ≤ 80 and 87− y + z ≤ 90,

recall that we are dealing with non-negative integer variables. Geometrically,
we have to find among all points with integer coordinates in the first quadrant
and below the lines y+z = 80 and z−y = 3 the point(s) which have the biggest
z coordinate, i.e., the ”highest” among all such points. Drawing the graphs of
the lines y + z = 80 and z− y = 3 we see that the maximum possible value of z
is 41, which is achieved for y = 38 or y = 39. On Fig. 3 you can see the graphs
, while Fig. 4 shows a zoomed picture near the point of intersection of the two
lines.

Thus the maximum possible value of z is 41, see Fig. 5 and Fig. 6.
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Furthermore, |B ∩C| could have any number of students between 0 and 41, for
example, one solution is shown in Fig. 7.
To sum up, under the given conditions we must have at least 142 but no
more that 183 students participating, and any any number between these two
extremes is possible. Correspondingly, the number of students taking Bio-
informatics and Coding can be any number between zero and forty one.

(b) With the notation from part a) it follows that y = 56− z, hence x = 87− (56−
z) = 31 + z, where 0 ≤ z ≤ 41, see Fig. 8.

However at this point we compute |B \ (A∪C)| = 90− (31 + z)− z = 59− 2z,
i.e., 59 − 2z students participated in Bio-informatics only.Thus z can be at
most 59/2, i.e., 29 since z is an integer. Therefore, since x = 31 + z we have
0 ≤ x ≤ 60. In conclusion, the number of students taking Algorithms and
Bioinformatics can be any number between zero and sixty.

¤
(4) Find the smallest N such that 1

3
N is a perfect cube, 1

7
N is a perfect seventh power

and 1
8
N is a perfect eighth power.

Proof. Since N is a perfect eighth power, N must be non-negative. Thus N = 0 is
the smallest number having the required properties.

However, we might want to know also what is the smallest positive integer number
N which satisfies the given conditions. In this case, there are positive integers a, b, c
such that 3a3 = 7b7 = 8c8. These equalities force c to be divisible by 21, b to be
divisible by 24 and a to be divisible by 14. Hence, N must be divisible by 356, 724

and 221, i.e. N = 356k724m221n. Also 56k−1 must be divisible by 3, 24m−1 must be
divisible by 7 and 21n− 3 must be divisible by 8. The smallest k = 2, the smallest
m = 5 and the smallest n = 7. Hence, N = 311271202147.

¤
(5) Determine the right triangle of smallest perimeter with integer sides, which has the

property that the area is equal to three times the perimeter.

Proof. By the Pythagorean Theorem, we know that a2 + b2 = c2, where a and b
are the perpendicular sides and c is the hypotenuse. The perimeter of the right
triangle is a + b + c and the area is ab

2
. We want to find all integers a, b, c satisfying

ab
2

= 3(a + b + c) = 3(a + b +
√

a2 + b2). We obtain 36(a2 + b2) = 36(a2 + 2ab +
b2) − 12(a2b + ab2) + a2b2 or ab(72 − 12a − 12b + ab) = 0. Since, a, b > 0 then
72+12a+12b+ab = 0. This is equivalent to (a−12)(b−12) = 72. The factor pairs
of 72 are (±1,±72), (±2,±36), (±3,±24), (±4,±18), (±6,±12), (±8,±9). Except
for the pair (−8,−9), the other negative pairs each force a side of the triangle to
have non-positive length. Also, the pair (−8,−9) would yield a 3,4,5 right triangle
which clearly doesn’t satisfy 3·4

2
6= 3(3 + 4 + 5). Hence, the possible solutions are

(a, b) ∈ {(13, 84), (14, 48), (15, 36), (16, 30), (18, 24), (20, 21)}. The triangles will have
sides (13, 84, 85), (14, 48, 50), (15, 36, 39), (16, 30, 34), (18, 24, 30), (20, 21, 29). ¤
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(6) 2009 lines are drawn in the plane such that:
• No two lines are parallel.
• At all points of intersection, at least three lines meet.
Show that all the lines go through one point.

Proof. Under the given conditions, there are finitely many points through which at
least three of the given lines are passing (call them points of intersection). Suppose
the claim is not true. Therefore we can find a point O contained in at least three
of the given lines, at a positive distance from some other line l, and such that all
other points of intersection are at a bigger or equal distance to the closest line. Since
there are at least three lines through O, consider their intersections with the line l
(no two lines are parallel!) The ”middle” of these points on l will be closer to one
of the lines through O, than O is to l.

An alternative solution is to use an induction argument and show that the claim
is true for any finite number of lines with the given property. ¤

(7) The hat game is a collaborative game played by a team of 3 players. Either a red
or a blue hat is put on each player’s head. The players can see the other players
hat colors, but cannot see and do not know the color of the hat on their heads.
Each player must either guess the hat color on his/her head or pass. The team
wins if every player who does not pass guesses the correct hat color and at least one
player does not pass (i.e. makes a guess). Before playing the team can determine a
strategy. Is there a strategy to win more than 50 percent of the time? If so, what is
the strategy and what is the probability that the team will win?

Proof.
(1st solution) Yes, there is a strategy to win more than 50 percent of the time. Note
that the possible combinations of hat placements are

RRR, RRB, RBR,BRR, RBB, BRB, BBR,BBB

where R =red and B =blue. Three fourths of the time, there are at least two hat
colors. If the group decides that the strategy is to only guess blue when a player
sees two reds or red when a player sees two blues, then the group fails only when
the colors are BBB or RRR. Thus the group will win three fourths of the time.
The same result is achieved by only guessing red when a player sees two reds or blue
when a player sees two blues, though, it is important that all people use the same
caller when they see two hats of the same color.

(2nd solution by Todor Parushev, United World College) The group can do even
better, if they can decide on an order in which they guess or pass. For example,
suppose the strategy is as follows. (i) The first and second players pass when the
third player has a blue hat, in which case the third player guesses blue. Thus, the
team wins if the third player has a blue hat. (ii) If a player guesses the players after
this player pass. (iii) The first player passes if the third player has a red hat and the
second player has a blue hat, in which case the second player guesses blue. Thus,
using (ii) and (iii), the team wins when the hats are, in order of the players, BBR
or RBR. (iv) The first player guesses red or blue when both the second and third
players have red hats. Thus, using (ii) and (iv), the team wins half of the time when
the hats are, in order of the players, BBR or RBR.
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With the above strategy the team wins in seven out of the eight possible cases,
i.e., with probability 7/8.

¤

(8) Suppose the beam of each of four projectors lights an oval-shaped area on the stage
of a theater. Show that if the spotlights of every three of the given four projectors
overlap somewhere, then there is a place which is in the spotlight of all of the
projectors.

Proof. The key here is that an oval is a convex figure, i.e., given any two points in
the interior of an oval the joining segment lies inside the oval.

Let A123 be a point in the spot-light of the 1st, 2nd and 3rd projectors. Define
three more points A124, A134 and A234 in the corresponding spotlights of three of the
given four projectors. If the quadrilateral with vertices at these four points is convex,
then the intersection of the two diagonals is a point in the intersection of the four
ovals - all points on a diagonal lie in the spot-lights corresponding to the common
indices of the two vertices. If the quadrilateral with vertices A123, A124, A134 and A234

is concave, then one of the points lies in the interior or on the triangle formed by the
remaining three points, which shows that the ”interior” point is in the spot-light of
all of the projectors. ¤

(9) Let a be a non-negative number, i.e., a ≥ 0. Define successively an infinite sequence
of non-negative numbers a1, a2, a3, . . . , an, . . . by letting a1 = a and then using the
formula

an+1 =
1

2
(a2

n + 1)

for n = 2, 3, . . . ( n runs through all positive integer numbers).
(a) Show that if 0 ≤ a < 1 then all of the numbers in the sequence

a1, a2, a3, . . . , an, . . .

are less than one.
(b) Show that if a > 1 then the sequence a1, a2, a3, . . . , an, . . . has arbitrarily

large numbers, i.e., given any number M there is at least one number among
a1, a2, a3, . . . , an, . . . which is larger than M .

Proof. If b is a number, 0 ≤ b < 1, then b2 < 1 hence 1
2
(b2 +1) < 1. Part (a) follows.

Suppose a > 1 + x for some x > 0. Then 1
2
(a2 + 1) ≥ 1 + x + x2

2
> 1 + x and

1
2
(a2 + 1) > a + x2

2
. Repeating this argument (or using an induction argument) we

see that

an+1 > an +
x2

2
and an+1 > 1 + x

for all positive integers n. Thus an > a1 + (n − 1)x2

2
, which can be as large as we

want.
An alternative way to solve the problem is to use that the sequence a1, a2, . . . , an, . . .

is increasing, so if it is bounded it will approach some number A. By continuity,
the relation an+1 = 1

2
(a2

n + 1) will imply that A = 1
2
(A2 + 1), i.e., A = 1. This is a

contradiction since the first element is bigger than 1. ¤
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(10) Let A be the only common point of two disks, not necessarily of the same radius,
with boundaries the circles c and c′. Suppose we draw two lines l and l′ which are
tangent to each of the circles. Let B and C be the points of contact of the line l,
correspondingly, with c and c′. Similarly, let B′ and C ′ be the points of contact
of the line l′, correspondingly, with c and c′. Show that the circles circumscribed
around the triangles 4ABC and 4AB′C ′ are tangent to each other.

Proof. Let s and s′ be the circles we are interested in. Under an inversion with
center the point A, the lines l and l′ become congruent circles through A, while the
circles c and c′ are transformed into two parallel lines touching the images of l and
l′. Therefore the images of s and s′ are parallel, which shows that the pre-images
have only one point in common, namely the point A.

(2nd proof) Let O and O′ be, correspondingly, the centers of the circles c and c′,
see Fig. 1. The two circles are tangent to each other at A and thus OA and O′A
are perpendicular to the common tangent line. This implies that the point A lies on
the segment OO′. The center K of the circle s′ circumscribing the triangle 4B′AC ′

is at equal distances from the three vertices and thus lies at the intersection of the
perpendicular bisectors of the segments B′A and AC ′, see Fig. 2. In fact, K is the
midpoint of the segment B′C ′ (so Fig. 2 is not exact but we shall improve on it!).
In order to prove this fact, notice that the triangles 4OAB′, 4O′AC ′, 4KAB′ and
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4KAC ′ are isosceles as two of their sides are radii of the same circle. Since the sum
of the angles at the point A is 180o, by considering the just mentioned triangles and
using that the angles across equal sides in a triangle are equal, we conclude that the
sum of the angles at B′ and C ′ is 180o. Therefore, the point K lies on the segment
B′C ′, see Fig. 3, and KA is perpendicular to OO′. The latter means that the circle
s′ is tangent to OO′. By symmetry, or relabeling the points, the circle s is also
tangent to OO′, hence s and s′ are tangent to each other at the point A.
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