UNM-PNM STATEWIDE MATHEMATICS
CONTEST XL

SOLUTIONS TO SECOND ROUND PROBLEMS
Any one who desires more details to any of the solutions below should contact me at
nakamaye@math.unm.edu

1. You turn on a calculator and the screen reads ‘0’. The calculator can only display numbers
smaller than 1 x 10'°. When you push the exponential button e® the calculator
computes and displays the exponential of whatever is on the calculator screen and
similarly when you push the natural logarithm button Inx the calculator computes
and displays the natural logarithm of whatever is on the calculator screen.

You have a coin which you flip. Each time the coin comes up heads you push the expo-
nential button e®. Each time the coin comes up tails you push the natural logarithm
button In x.

a. After 3 flips, what is the probability that the calculator reads Error?
b. After 7 flips, what is the probability that the calculator reads Error?

You may use on this problem the approximation 2.7 < e < 2.8,

For part a. the only type of error possible is taking the natural log of 0. This can
happen on the first toss (4 possibilities) or on the third toss (only one possibility,
namely HTT) so the probability is g that the calculator reads Error after three flips.

For part b. there are two types of errors which can occur, taking the natural log of
zero or overflow. To see how many times one needs to exponentiate to get an overflow
error we use the fact that 2 < e < 3. Thus

e = 1,
2< e <3,
4 < e <27,

16 < e < 3%,

Clearly ¢3”" will be an error while €6 will not be. It is also clear that e will be
an error and thus one needs a little better approximation of e to decide whether the
error will occur on the 5th or on the 6th time. Using e > 2.7 we see that e? > 7 and
e > 7v/2.7 > 7(1.5) > 10. Thus ¢ > 2'° > 1000 and so the overflow error definitely
occurs on the 5th iteration of exponentiation. There are 8 total ways to obtain an



overflow error, four where the first five tosses are heads, and four where there is one
out of the seven which is tails occurring on the 2nd, 3rd, 4th, or 5th toss.

For the In (0) error, this can only occur on the first, third, fifth, or seventh tosses and
there are 64, 16, 8, 5 respective ways in which this can happen. Adding it all up, the
probability of an error is 101/128.

2. Show that for any integer n > 2
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is not a whole number. What about
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Let M be the least common multiple of the denominators 2,...,n and write M = 2"s

where s is odd. Then 2" < n < 2"t! by the definition of r. We have

while for 1 < k < n different from 2" we see that the largest power of 2 dividing £ is
at most r — 1 and thus

where a;, is even. In particular the sum
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is equal to an odd number over M and hence is not a whole number.

The second part is similar except that one looks at powers of 3 instead of powers of 2.
In particular, suppose
3 <2n+1<3

There is only one fraction %

because the only other fraction with denominator less than 3" divisible by 3" is
which has an even denominator. Thus the sum

in our sum with denominator divisible by 3", namely 3%,
1
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has, when put over the least common multiple of the denominators, numerator which
is not divisible by 3, and thus it cannot be a whole number.



3. The fraction é = 0.16 repeats after the second decimal place while the fraction % =

0.076923 repeats after the sizth decimal place. Find when the decimals of the following
fractions repeat:

L
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b. -

2008 *

a.

Calculation shows that )

2—8 pug
and the answer is thus eight. The important point to note here is that the repeating
part of the decimal is the decimal for %. The reason for this is the following. We have

100 — 3%. But multiplication by 100 just moves the decimal two places to the right.

0.03571428

28
For part b. note that 2008 = 8 - 251. Thus the decimal expansion of ﬁ will repeat
three places after % = % Note that 251 is a prime number. For a prime number p

all fractions 7 for 1 <a <p-—1 repeat/terminate after the same number of places (this
is not obvious and is worth thinking about carefully!). Moreover, in the repeating case,
the entire decimal repeats, as opposed to the case of % where only the 6 repeats. Thus
we will look at 25% instead of ;—g? The next important point (this is a form of Fermat’s
little theorem which follows from the fact that the decimals £ all repeat/terminate

after the same number of places) is that the decimal of Z_él definitely repeats after 250
places but it might repeat earlier. It must, however, repeat after a divisor of 250 places
(why?) so the possibilities are 1,2,5,10,25,50,125,250. Repeating after k places would
mean that 10¥ — 1 is divisible by 251. Doing some modular arithmetic one finds that
the decimal of ﬁ repeats after 50 places and so that of ﬁ repeats after 53 places. To
see that the calculations are not all that bad, note that 10® = 1000 leaves a remainder
of —4 when divided by 251 and so 10'? leaves a remainder of (—4)* = 256 which is the
same as a remainder of 5. Hence 10?* leaves a remainder of 25 and 10?% a remainder
of 250 which is the same as —1. In particular 10°° leaves a remainder of one when
divided by 251. Since neither 102 nor 10'° leave a remainder of 1 (we already know

that 10%,10°, and 10%° do not), 50 is the smallest possibility.

a. Suppose ABC is a triangle and that the angle at vertex B is a right angle. Let P
be the point on AC so that BP is perpendicular to AC. Suppose AP has length
a and PC has length 1. What is the length of BP?

b. Suppose you are given a triangle 7' (not necessarily the triangle from part a.),
a straightedge, a compass, and a line segment of unit length. Is it possible to
construct a square S with the same area as 77 If so, describe how in detail and
if not prove that it is not possible.



The angles ABC, BPC', and APB are all right angles by hypothesis. Because they
all have the same three angles, the three triangles ABC, BPC', and APB are similar.
From the similarity of BPC and APB we deduce

BP PC

AP PB’
where the bar denotes the length of the given segment. From this equality and the
given information we see that PB = \/a.

Given a triangle ABC', label the vertices so that the angles BC' A and BAC' are both
acute. There are then several basic steps to constructing a square S whose area is
equal to the triangle ABC'.

a. Draw perpendicular line from B to AC, meeting AC at the point P.

b. Use the first part of problem 4 to construct segments of length vV AC and vV BP.
This requires a segment of unit length and the ability to draw a right angled
triangle with a specified base.

c. Multiply VAC and v BP. This also requires a construction and the use of similar
triangles.

d. Construct a square of area one (which requires drawing perpendiculars). Its diago-
nal has length v/2. Divide VAC - VBP by /2 (another geometric construction).

e. Use the length in part d. as your base for the square and then draw perpendicular
lines to this base at the two endpoints ...

5. Consider the real numbers

r = 0.1234567891011...
1 1
e = 1+ﬁ+§+“”
Thus x is obtained by listing, in order, all positive integers and, in the definition of e,
n! is the product of the first n whole numbers so that 2! = 2, 3! = 6, and so on.

a. Is z a rational number?

b. Is e a rational number?

For a. the answer is no. Any rational number § has a terminating or a repeating
decimal (because when doing long division of a by b there are only b possible different
remainders and so either one gets a remainder of zero and the decimal terminates or
two remainders repeat at which point the decimal repeats). The number z clearly does
not terminate so one must show it does not repeat. Suppose x does have a repeating
decimal of length n. If we go out far enough, we will find the number 1 x 10"*! which



has n + 1 consecutive zeroes. If x were a repeating decimal, the repeating part would
therefore have to be all zeroes, that is x would be a terminating decimal which it
definitely is not.

For b. suppose e is a rational number with denominator q. Then ae is a whole number
whenever ¢ divides a. In particular for any sufficiently large positive integer r the
number rle is an integer. Using the definition of e, it follows that

1 1
(r+1)+(r+1)(r+2)

is also a whole number whenever r is sufficiently large. This is impossible, however,
as the displayed number is clearly positive and it is also less than one when r is large
(why?).

a. Find the polynomial p(x) of degree three satisfying

p(=2) =0
p(0) =
p(l) =
p(3) = 45
b. Suppose d is a non—negative integer and suppose aq, ...aqy1 are distinct real num-
bers. Suppose by, ...,bg1 are (not necessarily distinct) real numbers. Show that

there exists a unique polynomial ¢(x) of degree at most d such that

q(a;) = b; for all i.

For part a. the polynomial is p(z) = 22* — 5z + 6. This can be found by plugging in
the numbers 2, 0, 1, and 3 to the polynomial p(z) and solving for the coefficients.

For part b. the desired polynomial is

d+1

P(z) = ; biQi()

where
_ IT;2i(2 — aj)

ITjzi(a; — aj)
The polynomials ();(x) have degree d and have the property that they are zero at a;
for j # i and equal to one at a;. To see that P(z) is unique, suppose that there were a
distinct polynomial @(z) with the same properties. Then the polynomial P(z) — Q(x)

Qi(z)



would vanish at a,...,a4,; and this is impossible ( because when a polynomial f(z)
vanishes at a this means that f(x) = g(z)(x — a) where g(z) has degree one less than
f). The choice of P(z) may look like something of a mystery but in fact it is perfectly
natural. Indeed suppose f(x) is a polynomial of degree at most r with f(a;) = b; for
1 <i<r+1. Then to get a polynomial g(z) of degree at mostr + 1 with g(a;) = b;
for 1 < i < r + 2, there is no reason to spoil the nice properties f(z) already has.
To construct g you want to find a polynomial which vanishes at ay, ..., a, (hence the
numerator of Q);(z))) and then takes the right value at a,,; (hence the denominator of
Qi(z)): adding this polynomial to f(z) gives the desired g(x).

7. Suppose 17 and T; are two triangles with the same area.

a. Is it possible to cut 7} into a finite number of smaller triangles which can be re-
assembled to make a rectangle ;7

b. [s it possible to cut 7} into a finite number of smaller triangles which can be
reassembled to form 757

Label the triangle 7" as in problem 4. Let BP be the perpendicular from B to AC and
let @ be the midpoint of AP. Let R be the point of AB so that R() is parallel to BP.
Then the triangle ARQ can be cut off and put back to complete a rectangle BPQS.
The same construction applied to PC will make then turn 7 into a rectangle. A few
extra cuts need to be made in order to decompose the new rectangle into triangles—
in particular the quadrilateral RBPQ can be cut into two triangles and similarly with
the other quadrilateral.

For part b. this is a very difficult problem, although the proof is perfectly elementary.
The answer is yes and I will provide a reference for anyone interested in learning more.



