UNM-PNM STATEWIDE MATHEMATICS CONTEST XL

February 2, 2008 SECOND ROUND THREE HOURS

All answers must be fully justified!!

1. You turn on a calculator and the screen reads ' 0 '. The calculator can only display numbers smaller than 1×10^{100}. When you push the exponential button e^{x} the calculator computes and displays the exponential of whatever is on the calculator screen and similarly when you push the natural logarithm button $\ln x$ the calculator computes and displays the natural logarithm of whatever is on the calculator screen.

You have a coin which you flip. Each time the coin comes up heads you push the exponential button e^{x}. Each time the coin comes up tails you push the natural logarithm button $\ln x$. You may use on this problem the fact that $2.7<e<2.8$.
a. After 3 flips, what is the probability that the calculator reads Error?
b. After 7 flips, what is the probability that the calculator reads Error?
2. Show that for any integer $n \geq 2$

$$
1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}
$$

is not a whole number. What about

$$
1+\frac{1}{3}+\frac{1}{5}+\ldots+\frac{1}{2 n+1} ?
$$

3. The fraction $\frac{1}{6}=0.1 \overline{6}$ repeats after the second decimal place while the fraction $\frac{1}{13}=$ $0 . \overline{076923}$ repeats after the sixth decimal place. Find when the decimals of the following fractions repeat:
a. $\frac{1}{28}$,
b. $\frac{1}{2008}$.
4.

a. Suppose $A B C$ is a triangle and that the angle at vertex B is a right angle. Let P be the point on $\overline{A C}$ so that $\overline{B P}$ is perpendicular to $\overline{A C}$. Suppose $\overline{A P}$ has length a and $\overline{P C}$ has length 1 . What is the length of $\overline{B P}$?
b. Suppose you are given a triangle T (not necessarily the triangle from part a.), a straightedge, a compass, and a line segment of unit length. Is it possible to construct a square S with the same area as T ? If so, describe how in detail and if not prove that it is not possible.
5. Consider the real numbers

$$
\begin{aligned}
x & =0.1234567891011 \ldots \\
e & =1+\frac{1}{1!}+\frac{1}{2!}+\ldots
\end{aligned}
$$

Thus x is obtained by listing, in order, all positive integers and, in the definition of e, $n!$ is the product of the first n whole numbers so that $2!=2,3!=6$, and so on.
a. Is x a rational number?
b. Is e a rational number?
6.
a. Find the polynomial $p(x)$ of degree three satisfying

$$
\begin{aligned}
p(-2) & =0 \\
p(0) & =6 \\
p(1) & =3 \\
p(3) & =45
\end{aligned}
$$

b. Suppose d is a non-negative integer and suppose $a_{1}, \ldots a_{d+1}$ are distinct real numbers. Suppose b_{1}, \ldots, b_{d+1} are (not necessarily distinct) real numbers. Show that there exists a unique polynomial $q(x)$ of degree at most d such that

$$
q\left(a_{i}\right)=b_{i} \text { for all } i
$$

7. Suppose T_{1} and T_{2} are two triangles with the same area.
a. Is it possible to cut T_{1} into a finite number of smaller triangles which can be reassembled to make a rectangle R_{1} ?
b. Is it possible to cut T_{1} into a finite number of smaller triangles which can be reassembled to form T_{2} ?
