UNM-PNM STATEWIDE MATHEMATICS CONTEST XL

February 2, 2008 SECOND ROUND THREE HOURS

All answers must be fully justified!!

1. You turn on a calculator and the screen reads '0'. The calculator can only display numbers smaller than 1×10^{100} . When you push the exponential button e^x the calculator computes and displays the exponential of whatever is on the calculator screen and similarly when you push the natural logarithm button $\ln x$ the calculator computes and displays the natural logarithm of whatever is on the calculator screen.

You have a coin which you flip. Each time the coin comes up heads you push the exponential button e^x . Each time the coin comes up tails you push the natural logarithm button $\ln x$. You may use on this problem the fact that 2.7 < e < 2.8.

a. After 3 flips, what is the probability that the calculator reads *Error*?

b. After 7 flips, what is the probability that the calculator reads *Error*?

2. Show that for any integer $n \ge 2$

$$1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$$

is not a whole number. What about

$$1 + \frac{1}{3} + \frac{1}{5} + \ldots + \frac{1}{2n+1}?$$

- 3. The fraction $\frac{1}{6} = 0.1\overline{6}$ repeats after the *second* decimal place while the fraction $\frac{1}{13} = 0.\overline{076923}$ repeats after the *sixth* decimal place. Find when the decimals of the following fractions repeat:
 - **a.** $\frac{1}{28}$, **b.** $\frac{1}{2008}$.

4.

a. Suppose ABC is a triangle and that the angle at vertex B is a right angle. Let P be the point on \overline{AC} so that \overline{BP} is perpendicular to \overline{AC} . Suppose \overline{AP} has length a and \overline{PC} has length 1. What is the length of \overline{BP} ?

- **b.** Suppose you are given a triangle T (*not* necessarily the triangle from part **a**.), a straightedge, a compass, and a line segment of unit length. Is it possible to construct a square S with the same area as T? If so, describe how *in detail* and if not prove that it is not possible.
- 5. Consider the real numbers

$$\begin{array}{rcl} x & = & 0.1234567891011\ldots \\ e & = & 1 + \frac{1}{1!} + \frac{1}{2!} + \ldots \end{array}$$

Thus x is obtained by listing, in order, all positive integers and, in the definition of e, n! is the product of the first n whole numbers so that 2! = 2, 3! = 6, and so on.

- **a.** Is x a rational number?
- **b.** Is *e* a rational number?

6.

a. Find the polynomial p(x) of degree three satisfying

$$p(-2) = 0$$

 $p(0) = 6$
 $p(1) = 3$
 $p(3) = 45$

b. Suppose d is a non-negative integer and suppose a_1, \ldots, a_{d+1} are distinct real numbers. Suppose b_1, \ldots, b_{d+1} are (not necessarily distinct) real numbers. Show that there exists a unique polynomial q(x) of degree at most d such that

$$q(a_i) = b_i$$
 for all *i*.

- 7. Suppose T_1 and T_2 are two triangles with the same area.
 - **a.** Is it possible to cut T_1 into a finite number of smaller triangles which can be reassembled to make a rectangle R_1 ?
 - **b.** Is it possible to cut T_1 into a finite number of smaller triangles which can be reassembled to form T_2 ?