
UNM-PNM STATEWIDE MATHEMATICS CONTEST XXXVII

FEBRUARY 5th, 2005 SECOND ROUND SOLUTIONS

PROBLEM 1: Abran, Alisa, Ava and Alejandro are walking home in the middle of the night. It is very dark
and they only have one lantern. They have to cross a wooden bridge. The bridge is in very poor condition
and can support at most two of them at a time. Those crossing the bridge need the lantern so as not to fall
through the cracks in the old wood, therefore the lantern needs to be transported back and forth until all of
them have crossed the bridge.

Alisa is very fast and can cross the bridge in 1 minute. Abran is also quite fast and can cross it in 2
minutes. Ava is less fast but can still do it in 5 minutes. Finally Alejandro, who is very scared of heights
and of the darkness, needs at least 10 minutes to cross the bridge.

We know the bridge will collapse after 18 minutes of walking over it. Will all of them be able to cross
the bridge safely? If YES, describe how, and in how many minutes they can cross. If NOT, explain why and
tell us what is the least amount of minutes in which all four friends can cross safely.

ANSWER: YES, they can cross safely in 17 minutes.

SOLUTION: One thinks about this problem and often the first idea is to have Alisa, the fastest kid, as
the lantern bearer. In this scenario Alisa will carry the lantern back and forth until everybody has crossed.
Hence she will cross the bridge 3 times with each of the slower children (2, 5, and 10 minutes each crossing),
and she will return twice on her own (1 minute each crossing). That requires a total of 2+5+10+1+1 = 19
minutes .... One realizes that not all of them will cross safely, the bridge will collapse before the last two
children (Alisa and somebody else) finish crossing. Many of you thought this was the solution, not a happy
ending.

However some of you realized (or knew already the problem) that one will save time if the slowest children
(Ava and Alejandro) will cross together. However if one of them has to return with the lantern whatever
was saved in time will be wasted. So we have to ensure that once Ava and Alejandro cross together they do
not have to return. We can achieve this by sending first the fastest children (Alisa and Abran) (2 minutes),
sending back either of them (say Abran) (2 minutes), then sending the slowest (Ava and Alejandro) (10
minutes), now Alisa which is on the safe side can return with the lantern (1 minute) and cross with Abran
(2 minutes). After 2+ 2+ 10+ 1+ 2 = 17 minutes all the children have crossed safely the bridge. And there
is a happy ending after all (provided they figure out the right strategy in less than one minute ;-).

PROBLEM 2:Let x, y, z be real numbers. Suppose (x + 1)(y + 1)(z + 1) 6= 0, and

x

x + 1
+

y

y + 1
+

z

z + 1
= 1. (1)

Find all possible values of the quantity (2xyz + xy + yz + zx) for all x, y, z with the above properties.

ANSWER: The only possible value of (2xyz + xy + yz + zx) is 1.

SOLUTION: One could try some experiments. This entails finding triples (x, y, z) different than −1, so
that (x + 1)(y + 1)(z + 1) 6= 0, and such that (1) holds.

Here are some examples of such triples,

• If x = y = z then 3x
x+1 = 1, that is 3x = x + 1, or x = y = z = 1/2. Substituting into the desired

expression we obtain 2(1/2)3 + 3(1/2)2 = 2/8 + 3/4 = 1/4 + 3/4 = 1.

• If x = 0 and y = z then 2y
y+1 = 1, that is 2y = y + 1, hence y = z = 1. This time the expression is

2 × 0× 12 + 0 × 1 + 12 + 1 × 0 = 1.

By symmetry same will happen in the cases y = 0, x = z = 1, and z = 0, x = y = 1.
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From these results one could GUESS that there is just one possible value for the expression, and that
such value must be 1. However this is nothing more than a guess since there are infinitely many triples
(x, y, z) with the desired properties (convince yourselves that that is indeed the case).

A proof is hence required and there is not much to do except for doing some algebra. Multiply both sides
of equation (1) by (x + 1)(y + 1)(z + 1), the non-zero common denominator, and simplify,

x(y + 1)(z + 1) + y(x + 1)(z + 1) + z(x + 1)(y + 1) = (x + 1)(y + 1)(z + 1)

3xyz + 2xy + 2yz + 2zx + x + y + z = xyz + xy + yz + zx + x + y + z + 1

Now collect and cancel similar terms, to obtain

2xyz + xy + yz + zx = 1.

PROBLEM 3: Amy has the following rule to distribute candies on Halloween: the first child to come
receives a 23rd of the candies plus one candy, the second one receives a 23rd of the remaining candies plus
two candies, the third one receives a 23rd of the remaining candies plus three candies, etc. All the candies
were given away and all the kids received the same amount of candies. How many children visited Amy?
How many candies did each child get?

ANSWER: There are 3 possible solutions:
1. The solution we expected was: 22 children visited Amy, and she had 506 candies. Each child received

23 candies.
2. Zero children visited Amy, and she had zero candies to distribute.
3. One child visited Amy, and Amy had 23/22 candies. The lonely child received (23/22)/23+1 candies,

that is all Amy had.

SOLUTION: Let X = total number of candies, N = number of children visiting Amy, and let A = number
of candies received by each child. According to the rules, the first child received a 23rd of the total number
of candies X plus one candy,

A =
X

23
+ 1.

The second child received a 23rd of the total number of candies left, X − A, plus two candies,

A =
X − A

23
+ 2.

The kth child received a 23rd of the total number of candies left, X − (k − 1)A, plus k candies,

A =
X − (k − 1)A

23
+ k.

The last child (Nth child) received a 23rd of the total number of candies left, X − (N −1)A, plus N candies,

A =
X − (N − 1)A

23
+ N.

At this point, all candies were gone, that is N ×A = X . We have a set of N linear equations in the variables
X, A. Given any two of them they will have a unique solution. Note that we are assuming that at least 2
children visited Amy. Substitute A = X

23 + 1 given by the first equation into the second equation to get a
linear equation in X ,

X

23
+ 1 =

X − ( X
23 + 1)

23
+ 2

2



Solve for X ,

X + 23 = X −
(

X

23
+ 1

)

+ 2 × 23

X =
22

23
X + 22

23X = 22X + 22× 23

X = 506.

Given X = 506 we can find A = X
23 + 1 = 506

23 + 1 = 22 + 1 = 23. Given X and A we can find
N = X/A = 506/23 = 22. Hence if at least 2 children visited Amy (otherwise we could not have started
our argument), then 22 children must have visited her and each received 23 candies. One might wonder if
all other N − 2 equations are satisfied. It suffices to check that the generic kth equation is satisfied for this
choice of values of A and X , more precisely,

X − (k − 1)A

23
+ k =

506− (k − 1)23

23
+ k = 22− (k − 1) + k = 22 + 1 = 23 = A,

and we are done!!! Some of you wrote a more or less complete table checking each of the 22 equations:

Kid Candies handed out Candies left

1 506
23 + 1 = 22 + 1 = 23 506− 23 = 483

2 483
23 + 2 = 21 + 2 = 23 483− 23 = 460

3 460
23 + 3 = 20 + 3 = 23 460− 23 = 437

4 437
23 + 4 = 19 + 4 = 23 437− 23 = 414

...
... =

... =
...

... =
...

20 69
23 + 20 = 3 + 20 = 23 69− 23 = 46

21 46
23 + 21 = 2 + 21 = 23 46− 23 = 23

22 23
23 + 22 = 1 + 22 = 23 23 − 23 = 0

The phrasing of the problem was such that it seemed that some children had come to Amy’s house,
at least three. However if we disect the wording, we did not said it explicitely, so we cannot rule out the
possibility of no children showing up, or only one. We should work out both possibilities1

If N = 0 then no child visited Amy and then X = N × A = 0, and since she ended up emptyhanded
she had zero candy to begin with. The value of A is irrelevant in this case... Two students noticed this
solution: 10th grader Leandra Boucheron from El Dorado HS, and 9th grader Punit Sha from
Albuquerque Academy.

If N = 1 then this time A = X = X
23 + 1, solving for X we obtain a non-integer solution X = 23/22,

which we could have discarded had we explicitely asked for whole candies. We did not make that assumption,
pressumably Amy could have cut the candies in smaller pieces. This solution was found by only one student:
9th grader Nathaniel Zakahi from Las Cruces HS.

The one thing we will keep whole is the children, N is a natural number!

PROBLEM 4: Suppose E is the foot of the perpendicular from C to diagonal BD in rectangle ABCD.
If the lengths of perpendiculars from E to AD and AB are a and b, respectively, express the length d of
diagonal BD in terms of a and b.

ANSWER: d = BD = (a2/3 + b2/3)3/2.

1When composing the exam we did not think about these other possibilities. It was not until 9th grader Punit Sha from
Albuquerque Academy contacted us to confirm the validity of the zero solution that we realized there was more than one
solution.
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Solution 1 (inspired by the work of Tony Huan, 8th grader from Desert Ridge MS):

Denote by F and G the foots of the perpendiculars from
E to DA and AB respectively. Denote by d1 = DE, d2 =
EB, note that FE = a and EG = b. We will find a formula
for d1 in terms of a and b and we will note that the same
formula with the roles of a and b interchanged will work
for d2, finally d = d1 + d2.
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There are many similar triangles, for example, 4DEC ∼ 4EFD, hence d1/DC = a/d1, thus d2
1 =

a × DC. On the other hand, DC = a + GB, and by Pythagoras theorem GB =
√

EB2 − b2. From
4EBG ∼ 4BCE we conclude that EB2 = b × BC. Notice also that BC = b + FD, and again by
Pythagoras FD =

√

d2
1 − a2. Hence

EB2 = b × BC = b(b + FD) = b2 + b
√

d2
1 − a2,

GB =
√

EB2 − b2 =

√

b
√

d2
1 − a2 = b1/2(d2

1 − a2)1/4,

DC = a + GB = a + b1/2(d2
1 − a2)1/4.

We conclude that
d2
1 = a × DC = a2 + ab1/2(d2

1 − a2)1/4.

Bring a2 to the left-hand-side, and notice that the quantity d2
1 − a2 appears on both sides, collect them

together to get,

(d2
1 − a2)3/4 = ab1/2 ⇒ d1 =

√

a2 + a4/3b2/3 = a2/3
√

a2/3 + b2/3.

Similarly, d2 = b2/3
√

a2/3 + b2/3. Lo and behold,

d = d1 + d2 = a2/3
√

a2/3 + b2/3 + b2/3
√

a2/3 + b2/3 = (a2/3 + b2/3)3/2,

or more symmetrically d2/3 = a2/3 + b2/3.
Since the picture in the exam was ambiguous and a number of students thought the question was to write

d1 in terms of a and b, we gave full credit for the correct computation of d1.

Solution 2 (inspired by the work of Kristin Cordwell, 8th grader from Jackson MS): Let F, G
be as in the previous proof. We will use the Pythagorean theorem many times to find various lengths in the
diagram. We will compute d1, and a similar computation or a symmetry argument will work for d2.

First, let x = FD =
√

d2
1 − a2. Next can compute GB

from 4DEF ∼ 4EBG,

BE =
bd1

x
, GB =

ab

x
.

Notice that BC = b + x, hence by Pythagoras,

CE2 = BC2 − BE2 = (b + x)2 − b2d2
1

x2
.
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2               d = 

ab

bd1
x

Finally, notice that DC = a + GB = a +
ab

x
, and once more by Pythagoras,

d2
1 = DC2 − CE2 =

(

a +
ab

x

)2

−
(

(b + x)2 − b2d2
1

x2

)
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= a2 +
2a2b

x
+

a2b2

x2
−
(

b2 + 2bx + x2 − b2d2
1

x2

)

= a2 +
2a2bx + a2b2 − b2x2 − 2bx3 − x4 + b2d2

1

x2

= a2 +
2a2bx + a2b2 + b2(d2

1 − x2) − 2bx3 − x4

x2

= a2 +
2a2bx + a2b2 + b2a2 − 2bx3 − x4

x2

In the last identity we used the fact that a2 = d2
1 − x2. Subtracting a2 on both sides, using now that

x2 = d2
1 − a2, and multiplying by x2 both sides of the equation, gives as x4 = 2a2bx + 2a2b2 − 2bx3 − x4.

Hence x must be a solution to the quartic polynomial

2x4 + 2bx3 − 2a2bx − 2a2b2 = 0,

which can be factored easily into 2(x3 − a2b)(b +x) = 0. There is only one positive solution to the equation,
hence x = a2/3b1/3. We conclude that

d1 =
√

a2 + x2 =
√

a2 + a4/3b2/3 = a2/3
√

a2/3 + b2/3.

Solution 3: Denote by H and I the feet of the perpendicular lines dropped from E onto sides CD and CB
respectively. Let x = EH , y = EI .

Let d1 = DE, d2 = EB, hence d = d1+d2. By Pythagoras,

d2
1 = a2+y2, d2

2 = b2+x2, and d2 = (x+a)2+(y+b)2.

Hence,

d =
√

(x + a)2 + (y + b)2 (2)

d =
√

a2 + y2 +
√

b2 + x2, (3)

In either case, if we can write x and y in terms of a and
b, then plugging the corresponding values into (3) or (2)
would give us an expression for d in terms of a and b.
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The following triangles are similar, 4EBH , 4CEH , 4DEI , 4CEI . From 4EBH ∼ 4CEH , and
4DEI ∼ 4CEI we get that

x

b
=

y

x
, and

y

a
=

x

y
.

A system of two equations on the variables x and y. Solving the first one for y we get y = x2/b, plugging
this into the second one we get,

x4

ab2
= x =⇒ x3 = ab2.

We get expressions for x and y in terms of a and b as desired,

x = a1/3b2/3, y = a2/3b1/3.

Substitute these formulae into (3) to obtain,

d =
√

(a + a1/3b2/3)2 + (b + b1/3a2/3)2

=
√

a2/3(a2/3 + b2/3)2 + b2/3(a2/3 + b2/3)2

=
√

(a2/3 + b2/3)(a2/3 + b2/3)2

= (a2/3 + b2/3)3/2.
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or into (2) to obtain,

d =
√

a2 + a4/3b2/3 +
√

b2 + b4/3a2/3

= a2/3
√

a2/3 + b2/3 + b2/3
√

a2/3 + b2/3

= (a2/3 + b2/3)3/2.

Any of the intermediate identities above give expressions for d in terms of a and b as requested.

Solution 4 (Prof. L.-S. Hahn): Let F and G, be the feet of the perpendicular dropped from E onto sides
DA and AB respectively as in the previous solutions.

Denote by θ the angle 6 DBA, note that

θ = 6 DBA = 6 DEF = 6 ECB = 6 EDC.

Also note that,

d1 = a sec θ, and d2 = b csc θ.

From 4CDE, we get

CE = d1 tan 6 CDE = d1 tan θ.

From 4BCE, we get

CE = d2 cot 6 BCE = d2 cot θ.

CD

a

b

d

d2

1

HEF

A                              B
G

Therefore,

d1 tan θ = d2 cot θ,

i.e., a sec θ tan θ = b csc θ cot θ

(tan θ)3 = b/a.

We have found tan θ in terms of a, b. In turn we can write sec θ and csc θ in terms of a, b, and hence we can
write d in terms of a, b. More precisely,

d = d1 + d2 = a sec θ + b csc θ

= a
√

1 + (tan θ)2 + b
√

1 + (cot θ)2

= a
√

1 + (b/a)2/3 + b
√

1 + (a/b)2/3

= (a2/3 + b2/3)3/2.

PROBLEM 5: Remember that

n
∑

k=1

ak = a1 + a2 + a3 + · · · + an−1 + an.

For example

7
∑

k=1

k2 = 12 + 22 + 32 + 42 + 52 + 62 + 72, in this case n = 7 and ak = k2.

(a) Evaluate

5
∑

k=1

1

k(k + 1)(k + 2)
.

(b) Find an integer m in terms of n such that

n
∑

k=1

1

k(k + 1)(k + 2)
=

1

4
− 1

m
.
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ANSWER: (a)

5
∑

k=1

1

k(k + 1)(k + 2)
=

5

21
. (b) m = 2(n + 1)(n + 2).

SOLUTION: (a) Computing directly, we get,

5
∑

k=1

1

k(k + 1)(k + 2)
=

1

1 × 2 × 3
+

1

2 × 3 × 4
+

1

3 × 4 × 5
+

1

4 × 5 × 6
+

1

5 × 6 × 7

=
4 × 5 × 7 + 5 × 7 + 2 × 7 + 7 + 4

4 × 5 × 6 × 7

=
140 + 35 + 14 + 7 + 4

840
=

200

840
=

5

21
.

We are testing your understanding of the summation notation and your arithmetic abilities.

(b) A direct computation will not work this time, we must find a better way. Those of you who attended
Dunham’s talk might have been inspired by his example summing up the reciprocals of the triangular
numbers! We will present three arguments, all based in different partial fraction decompositions

Solution 1: We can find numbers A, B, and C such that

1

k(k + 1)(k + 2)
=

A

k
+

B

k + 1
+

C

k + 2
,

by arguments similar to those discussed in Problem 2 in the First Round Exam. In this case A = C = 1/2,
B = −1. Therefore,

n
∑

k=1

1

k(k + 1)(k + 2)
=

1

2

n
∑

k=1

(

1

k
− 2

k + 1
+

1

k + 2

)

=
1

2

[(

1

1
− 2

2
+

1

3

)

+

(

1

2
− 2

3
+

1

4

)

+

(

1

3
− 2

4
+

1

5

)

+ · · ·

· · · +
(

· · · + 1

k + 1

)

+

(

1

k
− 2

k + 1
+

1

k + 2

)

+

(

1

k + 1
− · · ·

)

+ · · ·

· · · +
(

1

n − 1
− 2

n
+

1

n + 1

)

+

(

1

n
− 2

n + 1
+

1

n + 2

)]

.

Notice that the central negative terms cancel out most of the time with one term on the left and another
on the right, except on the edges where one of them is missing. This is an example of a double telescoping
sum. Cancelling everything there is to be cancelled, we are left with,

n
∑

k=1

1

k(k + 1)(k + 2)
=

1

2

[

1 − 1

2
− 1

n + 1
+

1

n + 2

]

=
1

2

[

1

2
− 1

(n + 1)(n + 2)

]

=
1

4
− 1

2(n + 1)(n + 2)
.

We conclude that m = 2(n + 1)(n + 2).

Solution 2 (by 11th grader Lu Yang from United World College): Denote by S the sum we are
trying to find,

S =

n
∑

k=1

1

k(k + 1)(k + 2)
.
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Notice that the following partial fraction decompositions hold:

1

k(k + 1)
− 1

k(k + 2)
=

1

k(k + 1)(k + 2)
=

1

k(k + 2)
− 1

(k + 1)(k + 2)
.

Using the first partial fraction decomposition we obtain

S =

n
∑

k=1

(

1

k(k + 1)
− 1

k(k + 2)

)

=

(

1

2
− 1

3

)

+

(

1

6
− 1

8

)

+· · ·+
(

· · · − 1

k(k + 2)

)

+

(

1

(k + 1)(k + 2)
− · · ·

)

+

· · · +
(

1

(n − 1)n
− 1

(n − 1)(n + 1)

)

+

(

1

n(n + 1)
− 1

n(n + 2)

)

.

Shifting the parenthesis one term to the right gives us,

S =
1

2
−
(

1

3
− 1

6

)

− · · · −
(

1

k(k + 2)
− 1

(k + 1)(k + 2)

)

− · · · −
(

1

(n − 1)(n + 1)
− 1

n(n + 1)

)

− 1

n(n + 2)
.

We can now use the second partial fraction decomposition to note that

S =
1

2
−
(

1

1 × 2 × 3
+

1

2 × 3 × 4
+ · · · + 1

(n − 1) × n × (n + 1)

)

− 1

n(n + 2)
.

The sum in parenthesis that is being subtracted in the middle corresponds to the initial sum up to n − 1,
that is, it equals S − 1

n(n+1)(n+2) , hence

S =
1

2
−
(

S − 1

n(n + 1)(n + 2)

)

− 1

n(n + 2)
=

1

2
− S +

1

n(n + 1)(n + 2)
− 1

n(n + 2)
.

Solving for S, we obtain,

2S =
1

2
− n

n(n + 1)(n + 2)
, or S =

1

4
− 1

2(n + 1)(n + 2)
.

We conclude that m = 2(n + 1)(n + 2).

Solution 3 (several students including 12th grader Robert Cordwell form Manzano HS):
This we consider the most efficient solution, it combines elements from the previous two solutions: partial
fraction into only two terms which provide a telescopic sum of the simplest type, namely a sum of the form

n
∑

k=1

(ak − ak+1) = (a1 − a2) + (a2 − a3) + · · · + (an−1 − an) + (an − an+1) = a1 − an+1.

There is a third partial fraction decomposition into two terms, namely,

1

k(k + 1)(k + 2)
=

1/2

k(k + 1)
− 1/2

(k + 1)(k + 2)
.

Hence our sum S equals a telescopic sum with term ak = 1
2k(k+1)

S =

n
∑

k=1

(

1

2k(k + 1)
− 1

2(k + 1)(k + 2)

)

=
1

4
− 1

2(n + 1)(n + 2)
.

As before we conclude that m = 2(n + 1)(n + 2).
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PROBLEM 6: (a) Given 6 points on a circle, how many chords are there having two of these 6 points
as endpoints? What is the maximum possible number of intersections these chords can make in the interior
of the circle? What is the maximum possible number of regions these chords can divide the interior of the
circle?

(b) Given 12 points on the circle, how many chords are there having two of these 12 points as endpoints?
What is the maximum possible number of intersections these chords can make in the interior of the circle?
What is the maximum possible number of regions these chords can divide the interior of the circle?

ANSWER: (a) 15 chords, 15 intersection points, 31 regions.
(b) 66 chords, 495 intersection points, 562 regions.

SOLUTION:

(a) This one can be done by hand. If we, like most people, draw a symmetric
picture, then we will be misslead. Counting chords, points and regions in
the case of the 6 points being the vertices of a regular hexagon, we will get
the right number of chords, which is 15 = 5 + 4 + 3 + 2 + 1 (5 chords from
the first point, 4 new chords from the second point, 3 new chords from the
third point, 2 new chords from the fourth chord, and 1 new chord from the
fifth point, the sixth point does not contribute any new chord). However
we will count only 13 interior intersection points and only 30 regions. See
figure on the right, here the numbers correspond to the regions.

1 2

3

4
5

6

7 8

9

10
11

12

13

14

15   16

17

18

19

20

21
22

23

24

25

26 27

28

2930

Notice that all intersection points except for the center occur as intersection
of only two chords. The center is an intersection point for 3 chords (three
diameters), and this is not the most efficient since we are seeking for the
maximum number of intersection points. It should be clear that by moving
slightly just one point then magically 3 intersection points appear where
there was only one, and a new region is created where before we had the
center of the circle. This time the picture is optimal since all intersection
points are now obtained from the intersection of just two chords, and all
chords that can intersect, are intersecting. We count 15 intersection points
(13 + 2), and 31 regions (30 + 1).

3

4
5

6
9

10
11

12

13

14

19

20

22

23

25

30

1

27
815    16

17
18

21

24

26
27

28

29

31

(b) In the case of 12 points, a priori one might think that it can also be done by hand, but it is quite
cumbersome. A more general method is worth finding.

Denote by Cn = number of chords determined by n points on the circle, In = maximum number of
intersection points determined by the chords inside the circle, and Rn = maximum number of regions
determined by the chords inside the circle.
Experimental results, observing patterns and guessing formulas:

Let us find the optimal numbers for the cases n = 1, 2, 3, 4, 5 (n = 6 we already did in part (a)),

1 2

3

4

5

6 7

8

9

10
11

12

13

1415

161

2

3

4

5
6

7

8

1 2

3

41

2

1

Let us record the results on a table

n 1 2 3 4 5 6
Cn 0 1 3 6 10 15
In 0 0 0 1 5 15
Rn 1 2 4 8 16 31

9



The table seems to have a clear pattern for the number of chords. To go from Cn to Cn+1 we are adding n
(at least for n ≤ 6), that is the following recurrence formula seems to hold,

Cn+1 = Cn + n. (4)

If we believe (4) holds for all n, we can use it to fill in the values of Cn for n ≤ 12,

n 1 2 3 4 5 6 7 8 9 10 11 12
Cn 0 1 3 6 10 15 21 28 36 45 55 66

Hence, if this pattern holds then C12 = 66.
Notice that had we done the table up to n = 5 to guess the result for n = 6 we could have been mislead

to conclude that R6 = 32 = 25, and that Rn = 2n−1 (in particular that R12 = 211) This is NOT the
case! However with the correct table (up to n = 6) in front of us we might notice another pattern, for
n = 1, 2, 3, 4, 5, 6 the following holds,

Rn = Cn + In + 1. (5)

It turns out that formulae (4) and (5) are both true, but we have to prove them, so far they are nothing
more than educated guesses. Furthermore even if we believe that (5) is true, we still need a way to figure
out In to use it.

To discover a patern for In we could do what some of you did, which is to analize first differences, then
second differences, and even third and fourth differences until the pattern of the differences is linear or
constant. This argument was very well explained by 10th grader Zeev Friedman from La Cueva HS,
he also used it to guess the formula for Problem 5(b).

0

0

1

5

15

35

0

1

4

10

20

1

3

6

10

2

3

4

a

b

b−a

Guess that x=5, then work backwards to fill in
the values in the other columns, and now 
continue guessing the values of the right end 

x=5

6

7

8

9

21

  15
 35

 70

126

210

330

495

56

  84

120

165

28

36

45

12

11

10

9

8

7

6

5

4

3

2

a
x

b=a+x

column to be consecutive integers. 
If this is the pattern, then we conclude that
  

I    =  49512 ,

R    =  495 + 66 + 1 = 562.12

                                                                  1

 

                                    0

n n             n             n  I           I         I         I       
2                  3

We can do a similar table for the number of

 
regions as the one for the intersection points, 
here it is on the right side.

n                                                                                                                                                                                               n

1

2

3

4

5

6

7

8

9

10

11

12

1
             1  
2                     1
             2                    1

             4                    2
4                     2          

             8                    3
16                   7  

8                     4  

31                  11   
            15                   4

            26                   5 
57                   16
             42                  6
99                   22
             64                  7
163                 29 
             93                  8
256                 37 
            130                 9
386                  46

562
            176                

2              3

1                 0 

                                                   0
                                                                           

n              n          n           n                                     R         R      R      R

Some of you did exactly this and discovered the right answers, because these were indeed the correct
paterns. Some of you even went farther and knew how to deduce formulas in terms of n if the pattern were
to hold. In the case of In, the fact that we get a linear pattern in the third differences ∆3I and we believe
the pattern continues forever, means that the formula the original quantity In obeys is a quartic polynomial
in n2, that is,

In = An4 + Bn3 + Cn2 + Dn + E.

To discover the coefficients it will suffice to evaluate the polynomial at five known points, for example,
n = 1, 2, 3, 4, 5 to obtain a system of 5 equations in the 5 unknowns A, B, C, D, E.

(I1 =) 0 = A + B + C + D + E,

2In general, if the linear pattern appears for the k-th differences ∆kI (or equivalently, a constant pattern appears for the
(k + 1)-th differences) then the original quantity obeys a k + 1 degree polynomial equation in n.
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(I2 =) 0 = 16A + 8B + 4C + 2D + E,

(I3 =) 0 = 81A + 27B + 9C + 3D + E,

(I4 =) 1 = 256A + 64B + 16C + 4D + E,

(I5 =) 5 = 625A + 125B + 25C + 5D + E.

This system can be solved, and the unique solution is,

A =
1

24
, B = −1

4
, C =

11

24
, D = −1

4
, E = 0.

If the pattern is to hold, then the formula for the number of intersection points is given by

In =
n4 − 6n3 + 11n2 − 6n

24
=

n(n − 1)(n − 2)(n − 3)

24
. (6)

With this formula and formula (4) for the number of chords, plus formula (5) for the regions we can also
guess a formula for the regions in terms of n,

Rn =
n(n − 1)(n − 2)(n − 3)

24
+

n(n − 1)

2
+ 1. (7)

Check that if we use the same method used for In to find the coefficients of the quartic polynomial that fits
the pattern table for Rn, the answer will coincide with (7).

We still need to justify formulas (4), (5) and (6). If they are valid, then they will imply (7).

Verifying that our guesses hold:
The most elegant and efficient way for proving (4) and (6) is recorded in Solution 2 below, but it

requires working knowledge of combinatorial numbers. Here we present alternative proofs which are somehow
convoluted, and requires knowledge of certain sums, namely:

n
∑

k=1

1 = 1 + 1 + · · · + 1 + 1 = n, (8)

n
∑

k=1

k = 1 + 2 + 3 + · · · + (n − 1) + n =
n(n + 1)

2
, (9)

n
∑

k=1

k2 = 12 + 22 + 32 + · · · + (n − 1)2 + n2 =
n(n + 1)(2n + 1)

6
. (10)

The last identity can be verified by mathematical induction, for example.
Cn can be computed by a similar method as in the first part, namely, the first point contributes (n − 1)

chords, the second (n − 2) new chords, . . ., the (n − 2)-th point contributes 2 new chords, the (n − 1)-th
point contributes 1 new chord, finally the n-th point contributes zero new chords, hence

Cn = (n − 1) + (n − 2) + · · · + 2 + 1 =
(n − 1)n

2
,

where the last identity is an application of (9). Then our recurrence equation (4) clearly holds,

Cn = (n − 1) + (n − 2) + · · · + 2 + 1 = (n − 1) + Cn−1.

We will show that (6) holds by mathematical induction. It holds for n = 1, 2, 3, 4, 5, 6, assume it holds for
n, we want to show it holds for (n + 1), namely,

In+1 =
(n + 1)n(n − 1)(n − 2)

24
.

11



Notice that
In+1 = In + (In+1 − In).

Let ∆In = In+1 − In, then by induction hypothesis,

In+1 =
n(n − 1)(n − 2)(n − 3)

24
+ ∆In. (11)

We need to compute ∆In. We are trying to maximize the number of interior intersection points of the chords
determined by (n + 1) points on the circle. Suppose the points are labeled clockwise P1, P2, P3, . . . , Pn+1.
If we remove the last point Pn+1, and the n chords it determines, we should have maximum number In of
interior intersection points determined by the Cn chords determined by the first n points, P1, . . . , Pn. We
wish to count the maximum number of new intersection points ∆In created when Pn+1 is added.

• Chord Pn+1P1 adds no interior intersection point, since P1 is adjacent to Pn+1.

• Chord Pn+1P2 adds as many intersection points as chords originating from
P1 there are, excluding the chords Pn+1P1, and P2P1. There are (n− 2) such
chords, hence Pn+1P2 contributes 1 × (n − 2) new intersection points.

• Chord Pn+1P3 adds as many intersection points as chords originating from P1

and P2 there are, excluding P1P2 and all those chords that have Pn+1 or P3

as the other endpoint.

– The excluded chords for P1 are P1Pn+1, P1P2, P1P3. The remaining
(n−3) chords originating from P1 contribute each one a new intersection
point.

– The excluded chords for P2 are P2Pn+1, P1P2, P2P3. The remaining
(n−3) chords originating from P2 contribute each one a new intersection
point.

All together, chord Pn+1P3 contributes 2 × (n − 3) intersection points.

• Chord Pn+1Pk contributes as many intersection points as chords originating
from P1, P2, . . . , Pk−1 there are , excluding those chords that have the other
endpoint equal to P1, P2, . . . , Pk−1, or Pk, or Pn+1.

– The excluded chords for P1 are P1Pn+1, P1P2, P1P3,..., P1Pk. The re-
maining (n − k) chords originating from P1 contribute each one a new
intersection point. Hence point P1 contributes (n − k) new intersection
points. Similarly for each of the other points P2, P3,..., Pk−1.

All together, chord Pn+1Pk contributes (k − 1) × (n − k) intersection points.

• Notice that the last chord, Pn+1Pn contributes zero intersection points, since
the endpoints are adjacent points. Formula still holds in this case, set k = n,
then (n − 1)(n − n) = 0.
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Adding up all new contributions we get that

∆In = 1 × (n − 2) + 2 × (n − 3) + · · · + (k − 1) × (n − k) + · · · + (n − 2) × 1. (12)

12



Using the summation notation and its linear properties3, we get that,

∆In =

n
∑

k=1

(k − 1)(n − k) (13)

=

n
∑

k=1

[(n + 1)k − n − k2] = (n + 1)

n
∑

k=1

k − n

n
∑

k=1

1 −
n
∑

k=1

k2. (14)

Evaluating the sums on the right hand side by (9), (8), and (10), we get,

∆In = (n + 1)
n(n + 1)

2
− n(n) − n(n + 1)(2n + 1)

6

=
n
[

3(n + 1)2 − 6n − (n + 1)(2n + 1)
]

6
=

n(n2 − 3n + 2)

6

=
n(n − 1)(n − 2)

6
.

We are ready to insert this into (11) to get,

In+1 =
n(n − 1)(n − 2)(n − 3)

24
+

n(n − 1)(n − 2)

6

=
n(n − 1)(n − 2)

[

(n − 3) + 4
]

24
=

(n + 1)n(n − 1)(n − 2)

24
.

Which is exactly what we wanted to prove. Formula (6) has been verified.
We can get a different formula for In, in terms of ∆Im for 1 ≤ m ≤ n,

In = (In − In−1) + (In−1 − In−2) + · · · + (I3 − I2) + I2 = ∆In + ∆In−1 + ∆In−2 + · · · + ∆I3 + I2.

This is yet another example of a telescoping sum. Remember that I2 = 0, and using summation notation,
we get

In =

n
∑

m=3

∆Im.

Substituting the formula for ∆Im given by (12) we can write a very long formula for In in terms of n, which
can be compactified by using the summation notation once more as in (13),

In =

n
∑

m=3

(

m
∑

k=1

(k − 1)(m − k)

)

. (15)

We can use this formula to compute I6 and I12 if we are pacient enough to carry on the calculations.
As for formula (5) we will also prove it by induction. It holds for n = 1, 2, 3, 4, 5, assume is true for n,

show it holds for (n + 1), that is,
Rn+1 = Cn+1 + In+1 + 1.

Notice that given a partition of a circle by N chords into RN regions if we add one more chord, then the
number of regions increments by one as we start travelling on the chord starting at one endpoint until we
reach the first intersection point if there is at least one, or the other endpoint if there is no intersection point
( we are subdividing an existing region into two regions). Then a second region is subdivided into two regions
until we hit the second intersection point, we keep on doing this until we reach the other endpoint. The

3Namely:

n
∑

k=1

(Cak + Dbk) = C

n
∑

k=1

ak + D

n
∑

k=1

bk.
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number of regions have incremented exactly by the number IN+1 of interior intersection points introduced
by the N + 1 chord plus one. That is

RN+1 = RN + IN+1 + 1.

In our case, n points determine N = Cn chords, and Rn = RCn
regions. Adding an extra point, amounts

to adding n new chords, and each chord will increase the number of regions by the number of intersection
points it determines plus 1. All together we conclude that,

Rn+1 = Rn + ∆In + n.

We can now use the induction hypothesis (5), to get

Rn+1 = Cn + In + 1 + ∆In + n.

Remember now that Cn+1 = Cn + n, and In+1 = In + ∆In, we get then

Rn+1 = Cn+1 + In+1 + 1.

Which is what we wanted to prove.
Not many students gave complete proofs of these facts, among them I would like to mention 9th grader

Benjamin Dozier from Los Alamos HS.

Solution 2 (Prof. L.-S. Hahn): Notice that each chord is uniquely determined by a pair of points, hence
Cn equals the number of ways we can choose two different points from the n points where the order in which
we choose the points does not matter (that is the chord determined by points A and B is the same as the
one determined by points B and A). For those of you familiar with combinatorial numbers that is exactly
the quantity given by

Cn =

(

n

2

)

=
n!

2!(n − 2)!
=

n(n − 1)

2
.

Remember that n! = n × (n − 1) × (n − 2) × · · · × 3 × 2 × 1, and
(

n
m

)

= n!
m!(n−m)! , for m ≤ n (we say “n

choose m”) 4.
To maximize the number of intersection points, we would like each one of them to be given by the

intersection of at most two chords. In this optimal configuration that we are seeking, each interior intersection
point is determined by 2 different chords that do not share and end point. But, 2 different chords that do
not share and end point are determined by four different points on the circle, and given four different points
on the circle there is only one pair of chords that creates an interior intersection point. Therefore there is a
one to one correspondence between interior intersection points and sets of four points chosen form the given
n points where the order in which we choose the points does not matter. For those of you familiar with
combinatorial numbers that is exactly the quantity given by

In =

(

n

4

)

=
n!

4!(n − 4)!
=

n(n − 1)(n − 2)(n − 3)

4!
.

To find Rn we use the same recurrence formula (5) discussed in the previous solution.
Lo and behold,

C6 =

(

6

2

)

=
6 × 5

2
= 15, I6 =

(

6

4

)

=
6 × 5 × 4 × 3

24
= 15, R6 = 15 + 15 + 1 = 31;

4
(

n

m

)

is the number of ways we can choose m objects out of n given ones, where the order in which we select them doesn’t

matter, they are the combinatorial numbers also denoted Cn
m that appear in Pascal’s triangle (see next page), which also appear

as coefficients of the polynomial (x + 1)n.
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C12 =

(

12

2

)

=
12× 11

2
= 66, I12 =

(

12

4

)

=
12× 11 × 10× 9

24
= 495, R12 = 66 + 495 + 1 = 562.

Since we have obtained two different looking formulas for In, namely (6) and (15), as a bonus we obtain
the following identity, which a priori is not obvious at all,

(

n

4

)

=
n
∑

m=3

(

m
∑

k=1

(k − 1)(m − k)

)

.

Notice that we can also use this combinatorial ideas to compute ∆In. The intersection points introduced
by the n + 1 point Pn+1, are in a one to one correspondence with sets of three different points chosen from
the n other points, and that is given by the combinatorial number “n choose 3”, that is,

∆In =

(

n

3

)

=
n!

3!(n − 3)!
=

n(n − 1)(n − 2)

6
.

We can now get a basic formula for combinatorial numbers from the formula In+1 = In + ∆In, namely,
(

n + 1

4

)

=

(

n

4

)

+

(

n

3

)

.

Exercise: show that the following formula holds in general for 1 ≤
m < n,

(

n + 1

m + 1

)

=

(

n

m + 1

)

+

(

n

m

)

.

This is the basic formula in the construction of Pascal’s triangle
which encodes in its n-th row the n-th combinatorial numbers, or
triangular numbers!

1    1

1       2       1

1       3        3        1

1        4       6        4        1

n+1
m+1

n                n
m             m+1(  )   (   )

(     )

PROBLEM 7: Let ABC be an acute triangle. Recall that an acute triangle has all angles less than 90◦.
(a) Given points P on AB, and Q on AC, find R on BC so that the perimeter of the triangle PQR is

minimal.
(b) Given a point P ′ on AB, find points Q′ on AC, and R′ on BC so that the perimeter of the triangle

P ′Q′R′ is minimal.
(c) Find points P ′′ on AB, and Q′′ on AC, and R′′ on BC so that the perimeter of the triangle P ′′Q′′R′′

is minimal.

ANSWER: See Solution.

SOLUTION: (a) The answer to this problem is the same as the answer to the billiard problem 8(a) in the
first round exam. The point R on the side BC that will minimize the perimeter of 4PQR is the point we
will have to aim at if we were hitting a ball at point P and we would like it to bounce on side BC and hit a
ball at point Q.

Denote by P ∗ the point symmetric to P with respect to
side BC. Let R be the intersection point of BC and P ∗Q.

Claim: 4PQR has minimal perimeter.

Note that minimizing the perimeter of 4PQS for S a point
on BC is the same as minimizing PS + SQ, since the side
PQ is fixed. By construction, PR + RQ = P ∗R + RQ =
P ∗Q (straight line). For any other point S on BC, it is
still true that PS = P ∗S, however (see the picture),

PS + SQ = P ∗S + SQ ≥ P ∗Q = PR + RQ.

Hence R minimizes the desired quantity.

A

B C

P

Q

R

P

S

*
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(b) We can still view this as a billiard problem with an acute angled corner 6 BCA. This time we want to
find points R′ on BC and Q′ on AC so that when we the ball sitting on P ′ is aimed at R′ it bounces towards
side AC and hits it exactly at Q′, and then bounces back towards P ′. That is, we want R′, Q′ so that P ′R′

and R′Q′ are reflection trajectories, and so are R′Q′ and Q′P ′.

Denote by P ′∗ the point symmetric to P ′ with respect
to side BC, and by P ′∗∗ the point symmetric to P ′ with
respect to side AC. Let R′ and Q′ be the intersection
points of P ′∗P ′∗∗ with sides BC and AC respectively. Note
that P ′R′ = P ′∗R′ and P ′Q′ = P ′∗∗Q′.

Claim: 4P ′Q′R′ has minimal perimeter.

Notice that the perimeter of 4P ′R′Q′ is

P ′R′ + R′Q′ + Q′P ′ = P ′∗P ′∗∗ (straight line).

A

B CS’ R’

Q’

P’

P’

T’

*

P’**

Given any other points S ′, T ′ on BC and AC respectively, by construction it is still true that P ′S′ = P ′∗S′

and P ′T ′ = T ′P ′∗∗. Therefore, the perimeter of 4P ′S′T ′ is

P ′∗S′ + S′T ′ + T ′P ′∗∗ ≥ P ′∗P ′∗∗.

Hence 4P ′Q′R′ has minimal perimeter as claimed.

(c) This time we do not have an initial point, however once we have a candidate for P or Q or R (we
will drop the double primes for simplicity in the notation), by part (b) the other two points must obey the
reflection properties. That is, if 4ABC is a billiard table, then we are searching for points P, Q, R, so that
if we aim a ball sitting on any of them at the other points, the trajectory of the ball will be the perimeter
of 4PQR. If we draw the line through P (respectively R, Q) perpendicular to AB (respectively BC, AC),
then it will bisect 6 QPR (respectively 6 PRQ, 6 RQP ).

This is a property of the orthotrianglea, that is the triangle
whose vertices are the feet HA, HB , HC of the perpendic-
ulars dropped from A, B and C respectively (notice that
HA, HB , HC lie on the sides of 4ABC because it is as-
sumed to be an acute triangle).

aTry to prove this fact. It will be a corollary of the proof below.

A

CB

P

R

Q

Claim: P = HC , Q = HB , R = HA are the points that minimize the perimeter of 4PQR.

Proof of the Claim (by Prof. L.-S. Hahn): Given point P on side AB, denote by P ∗ the point
symmetric to P with respect to side BC, and by P ∗∗ the point symmetric to P with respect to side AC.
Let R and Q be the intersection points of P ∗P ∗∗ with sides BC and AC respectively.

Note that PR = P ∗R and PQ = P ∗∗Q, and hence
6 PQA = 6 P ∗∗QA and 6 PRB = 6 P ∗RB. These in turn
imply that 4PQC is not only similar but also congruent
to 4P ∗∗QC, since 6 PQC = 6 P ∗∗QC. We conclude that
PC = P ∗∗C, and that 6 PCQ = 6 P ∗∗CQ. The same ar-
gument shows that 4PRC is congruent to 4P ∗RC, hence,
PC = P ∗C, and 6 PCR = 6 P ∗CR.
Therefore, recalling that 6 ACB = 6 PCQ + 6 PCR, we
conclude that

6 P ∗∗CP ∗ = 2 6 ACB.

A

CB

P

R

Q

P*

P**
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Since PC = P ∗C = P ∗∗C, then 4P ∗∗CP ∗ is ISOSCELES at vertex C, and the angle at vertex C is
INDEPENDENT of the choice of the point P .

Moreover, the side P ∗P ∗∗ = P ∗R + RQ + QP ∗∗ = PR + RQ + QP , is equal to the perimeter of 4PQR,
which is the quantity we want to minimize. Because the angle at vertex C of 4P ∗∗CP ∗ is independent of
the choice of P , then the side P ∗P ∗∗ will be minimized whenever the length of sides P ∗C and P ∗∗C are
minimized. Both sides have length equal to PC and that length is minimized when PC is perpendicular to
AB, that is when P = HC .

Similar arguments will prove that R = HA and Q = HB .
We have shown that the orthotriangle 4HAHBHC minimizes the perimeter of all triangles inscribed on

4ABC. Furthermore we have shown that the orthotriangle has the reflection property at each vertex, that
is, the heights HAA, HBB, HCC bisect the angles 6 HBHAHC , 6 HCHBHA, 6 HAHCHB , respectively.

PROBLEM 8: Express an arbitrary positive integer n as the 2n−1 ordered sums of positive integers. For
example, if n = 4, the 8 ordered sums are listed in the left column below:

4 2 (= 2)
3 + 1 2 × 1 (= 2)
1 + 3 1 × 2 (= 2)
2 + 2 3 × 3 (= 9)

2 + 1 + 1 3 × 1 × 1 (= 3)
1 + 2 + 1 1 × 3 × 1 (= 3)
1 + 1 + 2 1 × 1 × 3 (= 3)

1 + 1 + 1 + 1 1 × 1 × 1 × 1 (= 1)

The entries in the right column are obtained from the corresponding ones in the left column by

(a) Changing all additions to multiplications;

(b) Changing all integers k ≥ 3 to 2;

(c) Changing 2 to 3;

(d) Keeping 1 unchanged.

Finally, add all the products in the right column. For n = 4, we obtain

2 + 2 + 2 + 9 + 3 + 3 + 3 + 1 = 25 (= 52).

Prove or disprove: For every positive integer n, the sum of all the products in the right column is always
a perfect square.

ANSWER: Yes, for every positive integer n, the sum of all the products in the right column is always a
perfect square, in fact the square of a Fibonacci number.

SOLUTION: The first thing to do in a problem like this is to experiment with other values of n. Let us
see what happens if we perform this crazy procedure for n = 1, 2, 3. Denote by Sn the sum of the products
on the left column for the table corresponding to n.

1 1 (= 1)

S1 = 1 = 12

2 2 (= 3)
1 + 1 1 × 1 (= 1)

S2 = 3 + 1 = 4 = 22

3 2 (= 2)
2 + 1 3× 1 (= 3)
1 + 2 1× 3 (= 3)

1 + 1 + 1 1 × 1 × 1 (= 1)

S3 = 2 + 3 + 3 + 1 = 9 = 32
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We are given that S4 = 52. It works so far, but before advancing a hypothesis, let us check one more
case, n = 5. This time there will be 24 = 16 different combinations,

5 2 (= 2) 3 + 1 + 1 2 × 1 × 1 (= 2)
4 + 1 2 × 1 (= 2) 1 + 3 + 1 1 × 2 × 1 (= 2)
1 + 4 1 × 2 (= 2) 1 + 1 + 3 1 × 1 × 2 (= 2)
3 + 2 2 × 3 (= 6) 2 + 1 + 1 + 1 3 × 1 × 1 × 1 (= 3)
2 + 3 3 × 2 (= 6) 1 + 2 + 1 + 1 1 × 3 × 1 × 1 (= 3)

2 + 2 + 1 3 × 3 × 1 (= 9) 1 + 1 + 2 + 1 1 × 1 × 3 × 1 (= 3)
2 + 1 + 2 3 × 1 × 3 (= 9) 1 + 1 + 1 + 2 1 × 1 × 1 × 3 (= 3)
1 + 2 + 2 1 × 3 × 3 (= 9) 1 + 1 + 1 + 1 + 1 1 × 1 × 1 × 1 × 1 (= 1)

S5 = 3 × 2 + 2 × 6 + 3 × 9 + 3 × 2 + 4 × 3 + 1 = 64 = 82

So far we seem to be obtaining perfect squares. A good number of students at this point GUESSED that
one will always get a perfect square. A few students noticed a pattern,

Sn : 12, 22, 33, 52, 82, . . .

The sequence
√

Sn coincides, at least for n ≤ 5, with the famous Fibonacci sequence

Fn : 1, 2, 3, 5, 8, 13, 21, . . .

Given the first two terms of the Fibonacci sequence, F1 = 1, F2 = 2, all other terms are found adding up
the previous two terms, namely,

Fn = Fn−1 + Fn−2.

Conjecture: Sn = F 2
n for all n > 0.

At this point one could try one more experiment to validate the conjecture. Check by hand that

S6 = 169 = 132 = F 2
6 .

Proof of the conjecture: We will proceed by mathematical induction in a fashion very similar to Solution
2 for Problem 4(b) in the first round. We have already checked the cases n = 1, 2, 3, 4, 5, 6. Assume now
that Sk = F 2

k for all k ≤ n. We will show that Sn+1 = F 2
n+1.

• There are 2n−1 ways to write (n + 1) as a sum of positive integers so that the last summand is 1,

n + 1 = (n) + 1 → (corresponding product) × 1,

where (n) denotes one of the possible 2n−1 ways of writting n as a sum of positive integers where the
order matters. These terms when added up will contribute Sn × 1 = Sn to Sn+1.

• There are 2n−2 ways to write (n + 1) as a sum of positive integers so that the last summand is 2,

n + 1 = (n − 1) + 2 → (corresponding product) × 3,

where (n − 1) denotes one of the possible 2n−2 ways of writting n − 1 as a sum of positive integers
where the order matters. These terms when added up will contribute Sn−1 × 3 = 3Sn−1 to Sn+1.

• There are 2n−k ways to write (n+1) as a sum of positive integers so that the last summand is 3 ≤ k ≤ n,

n + 1 = (n − k + 1) + k → (corresponding product) × 2,

where (n − k + 1) denotes one of the possible 2n−k ways of writting n − k + 1 as a sum of positive
integers where the order matters. These terms when added up will contribute Sn−k+1 × 2 = 2Sn−k+1

to Sn+1.
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• Finally there is always the number itself, the case k = n + 1 ≥ 3,

n + 1 = (0) + (n + 1) → 2,

which contributes 2S0 to Sn+1, where S0 = 1 = F0 = F 2
0 .

Lo and behold,

Sn+1 = Sn + 3Sn−1 + 2(Sn−2 + Sn−3 + · · · + S1 + S0)

= Sn + Sn−1 + 2(Sn−1 + Sn−2 + Sn−3 + · · · + S1 + S0).

We can now use the inductive hypothesis, Sk = F 2
k for k ≤ n,

Sn+1 = F 2
n + F 2

n−1 + 2(F 2
n−1 + F 2

n−2 + · · · + F 2
1 + F 2

0 ).

Claim: F 2
n−1 + F 2

n−2 + · · · + F 2
1 + F 2

0 = Fn−1Fn.

Assuming the claim is true, then,

Sn+1 = F 2
n + F 2

n−1 + 2Fn−1Fn = (Fn + Fn−1)
2 = F 2

n+1,

and the conjecture is proved.

Proof 1 of the claim: We can proceed by induction once more. We should first check that the claim holds
for n = 1,

F 2
0 + F 2

1 = 1 + 1 = 2 = F1F2.

It never hurts to check the next case for comfort (but it is really not necessary),

F 2
0 + F 2

1 + F 2
2 = 1 + 1 + 4 = 6 = F2F3.

Assume now that F 2
0 + F 2

1 + · · · + F 2
n−1 = Fn−1Fn, show that F 2

0 + F 2
1 + · · · + F 2

n−1 + F 2
n = FnFn+1. By

inductive hypothesis,

(F 2
0 + F 2

1 + · · · + F 2
n−1) + F 2

n = Fn−1Fn + F 2
n = Fn(Fn−1 + Fn) = FnFn+1.

The claim has been proved.

Proof 2 of the Claim (Prof. L.-S. Hahn): This is a beautiful geometric argument. The idea is to
interpret each summand on the right as the area of a square, and the term in the right as the area of a
rectangle.

Consider the first identity we want to prove,

F 2
0 + F 2

1 = F1F2.

It is obviously true when we look at the picture an compute the areas in the two ways sketched.

F          F                                      F + F  = F0                      1                                                                               0           1             2                                                                                  

                        0                         1                  1                                                                  1       2                            1                         F           F        F                                F  F            F 
2                         2
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Add to the previous picture a square of sidelength F2,
F          F                                      F + F  = F0                      1                                                                               0           1             2                                                                                  

F  + F  = FF  F

         F           F        F                                                 0                       1                   1                                                                   

 2                            2F             F 
2

2 2

2      3                              1              2             3 

Then it is clear from the picture that

F 2
0 + F 2

1 + F 2
2 = F2F3

Assume now that at step n identity holds, hence if we draw a rectangle of sidelengths Fn and Fn−1, its
area coincides with F 2

0 + · · · + F 2
n−1. Build a square on the side of length Fn, to obtain a new rectangle

whose area is the area of the initial rectangle plus F 2
n , but at the same time its sidelenths are Fn and

Fn−1 + Fn = Fn+1, hence its area is also equal to FnFn+1.

F                  F                                             F    + F  = F     

n                n−1     n                                 n                                                                                                   n         n+1                                    n   

n−1                                   n                                                                                             n−1              n              n+1                        

 F       F   F               F                                                F   F                   F
2

This problem is a creation of Prof. L.-S. Hahn. Only two students had a complete proof for this problem:
12th graders Jeff Dimiduk and Robert Cordwell (El Dorado HS).

***

Dear students: If you have any suggestions about the Contest, or if you have different solutions to any of
this year’s problems, please send them to:

Prof. Cristina Pereyra
Dept. of Mathematics and Statistics

University of New Mexico
Albuquerque, NM 87131

or e-mail them to: crisp@math.unm.edu

Remember that you can find information about past contests at:
http://www.math.unm.edu/math contest/contest.html

I would like to express my gratitude for the invaluable help provided by
Prof. L.-S. Hahn.

His input made, as always, the exam better than it was originally
Finally thanks to all of the participants, their teachers and families,

you are an inspiration for us.

***
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